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Abstract

• present a novel watermark detector for additive spread-spectrum
watermarking in the DWT domain of color images

• model correlated DWT subbands of RGB color channels by mul-
tivariate power-exponential (MPE) distributions

• derive a likelihood ratio test (LRT) for watermark detection based
on joint model for DWT detail color subbands

Introduction and Prior Work

Watermarking has been proposed as a technology to ensure copyright
protection by embedding an imperceptible, yet detectable signal in
digital multimedia content. Most watermarking research focuses on
grayscale images. Color image watermarking is usually accomplished
by marking only the luminance channel or by processing each color
channel separately [1].
Blind detection performance can be improved by accurately modeling
the host signal noise [2]. Expressing the joint statistical distribution
of transform coefficients across correlated color channels is tedious
and has been proposed for the Gaussian host signal case only [3].
We derive a detector based on the multivariate power-exponential
(MPE) distribution jointly modeling the DWT subband coeffi-
cients of color images. To compare, we implement watermarking
approaches in the DWT domain based on linear correlation detec-
tion (LC) on the luminance channel (LC-L), on a joint Gaussian
model (LC-J) [3], on decorrelated channels (LC-KLT) [1] as well
as a LRT conditioned on a GGD model of the luminance coefficients
(LRT-GGD-L) [2].

MPE Host Signal Model

We introduce a Likelihood-Ratio Test for watermark detection in host
signal noise which follows a multivariate power-exponential (MPE)
distribution and discuss threshold determination as well as param-
eter estimation issues. This noise model for wavelet detail subband
coefficients has already been successfully applied in the context of sta-
tistical color image retrieval [4] for example. The probability density
function (PDF) of the multivariate power-exponential distribution
with dimensionality n (MPEn) is given by
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where Σ is a positive-definite symmetric n × n matrix, β ∈ (0,∞)
denotes the shape parameter and µ ∈ R

n denotes the location vector.
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Since we aim at modeling wavelet coefficient distributions, it is rea-
sonable to assume zero mean to reduce free parameters. We assume
RGB images, thus we have three color bands and n = 3.
The main reason for choosing a multivariate statistical model is the
high correlation which can be observed between the same wavelet de-
tail subbands of different color image channels. The statistical model
of Eq. (1) is a special case of the Kotz-type family of distributions [5].
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Scatter-plot of the HL subband coefficients of the R,G and B
channel of the Island image at decomposition level two.

Parameter Estimation

Parameter estimation of the MPEn noise model is accomplished us-
ing the method of moments by matching the variance and Mardia’s
multivariate Kurtosis coefficient [6, 7] to their empirical estimates.
Let X ∼ MPEn(Σ, β), then the variance of X is given by
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Mardia’s multivariate Kurtosis coefficient is defined as
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in case of a MPEn(Σ, β) distribution. Given that S denotes the
classic sample variance (setting µ = 0) we can estimate γ2(X) by

γ̂2(x1, . . . ,xm) =
1

m

m
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)2
− n(n + 2). (5)

from our data x1, . . . ,xm where m denotes the number of wavelet
coefficients in each target subband. We use β̂ to obtain an estimate
for Σ. β = 1 corresponds to a multivariate Gaussian distribution.

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

Estimated β

Histogram and kernel density fit for the shape parameter β̂ over all
24 Kodak test images.

Embedding and Detection Problem

We create a bipolar, pseudo-random watermark sequence w =
[w1, . . . , wm]T with wi ∈ {+1,−1} (depending on a secret key
K). According to the rule of additive spread-spectrum watermarking,
W = [wT wT wT ] is added to the signal matrix by Y = X + αW
where α denotes embedding strength. The hypothesis of the signal
detection problem are

H0 : Y = X (not watermarked)

H1 : Y = X + αW (watermarked)
(6)

Assuming independence of the observations x1, . . . ,xm, the statistic
of the LRT is

l(Y) =

∏m
i=1 p(yi − αwi;Σ, β)
∏m

i=1 p(yi;Σ, β)
. (7)

Taking the logarithm and inserting the PDF of Eq. (1) we obtain
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L(Y) follows a Normal distribution under H0 and H1 with param-
eters (µ0, σ

2
0) and (µ1, σ

2
1), resp. If we consider yi fixed, the only

variable term is wi and the expected value µ0 under H0 (note that
yi = xi) can be calculated as
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and the variance σ2
0 of the detection statistic L(Y) is given by
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Having obtained both parameters of the Gaussian under H0 allows
the determination of the detection threshold T in a Neyman-Pearson

sense as T = erfc−1(2Pf )
√

2σ2
0 + µ0 where Pf denotes the desired

probability of false alarm. The detection statistic parameters (µ1, σ
2
1)

under H1 are µ1 = −µ0 and σ2
1 = σ2

0 as ∀i : yi = xi + αwi.

Experimental Results

Nine Kodak color images are resized to 192× 128 pixel, decomposed
with biorthogonal 7/9 wavelet filters and the HL subband at decom-
position level 2 is watermarked with α = 5 (PSNR ≈ 46 dB). We
verify that the detector responses follow a Gaussian law by a Lilliefors
test [8] at the 5% significance level and check that the theoretical val-
ues µ0 and σ2

0 are close to the experimental values we obtain from
Eq. (9) and Eq. (10) under H0.

Image µ0 µ̂0 σ0 σ̂0

Barn −238.71 −239.39 805.58 800.72
Facade −216.56 −216.51 658.74 637.65
Girl −133.77 −133.30 372.45 350.54
House −134.91 −134.23 254.95 244.17
Island −353.10 −353.55 1609.80 1571.80
Parrots −287.28 −285.25 1738.73 1657.28
Rafting −185.94 −186.64 801.52 826.01
Window −139.83 −140.59 986.03 984.52
Zentime −349.46 −352.74 1491.52 1461.93

Theoretical and experimental values of the detector statistics
under H0

The mean and variance of the detection statistic are estimated ex-
perimentally under H1 from 1000 test runs for each image and
P̂m = 1

2 erfc ((µ̂1−T )/
√

2σ̂2

1
) is used to determine the empirical proba-

bility of missing the watermark for a false-alarm rate of Pf = 10−6.
The MPE detector performs better than the LRT-GGD-L detector
except for one image and significantly outperforms the LC detectors.

Image LC-L LC-J LC-KLT LRT-GGD-L MPE

Barn 10−6 10−7 10−27 10−31 10−50

Facade 0.46 0.35 10−5 10−5 10−24

Girl 0.97 0.97 0.43 10−95 10−103

House 0.03 0.02 10−12 10−8 10−22

Island 10−9 10−10 10−42 10−189 10−166

Parrots 10−6 10−6 10−20 10−70 10−86

Rafting 0.21 0.15 10−7 10−12 10−16

Window 0.02 0.03 10−9 10−54 10−79

Zentime 0.12 0.06 10−10 10−121 10−168

Empirical probability of missing the watermark (P̂m) at 46 dB
PSNR for different detectors (Pf = 10−6, 1000 test runs).

Conclusion

We proposed a novel detector for additive, spread-spectrum water-
marking of color image DWT subbands based on the multivariate
power-exponential distribution. This signal model allows to capture
the highly correlated structure of the subbands. The derived likeli-
hood ratio test achieves increased detection performance compared
to watermarking the luminance channel only and earlier detectors
based on a Gaussian host signal model.
Source code available at http://www.wavelab.at/sources. Re-
search funded by Austrian Science Fund project FWF-P19159-N13.
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