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Abstract

• Traitor tracing based on Tardos codes

• Iterative accusation algorithm with side information to catch as
many colluders as possible

Traitor Tracing

Identify a small set of dishonest users illegally distributing their con-
tent copies. Embed the user’s codeword in the content copy via
watermarking. The content is split into blocks and each block carries
a ’0’ or ’1’ symbol.

Setup

•m: number of bits in codeword, c: number of colluders

• n: number of users/codewords xj = (xj(1), . . . , xj(m))

Coding The Tardos code [1] is the optimum code construction. A
matrix X = [x1, . . . ,xn] is generated:

1. Randomly draw sequence p = (p(1), . . . , p(m)) with

p(i)
i.i.d
∼ f (p) : (0, 1)→ R

+, p→ (π2(1− p))−1/2.

2. Randomly draw xj(i) s.t. P(xj(i) = 1) = p(i).

Collusion The colluders mix their copies to forge a pirated copy.
The watermark decoder retrieves a pirated sequence y ∈ {0, 1}m.
Marking assumption: y(i) ∈ {xj(i)} for 1 ≤ j ≤ n.

Decoding Identify the colluders given y, p and X.

Goal Identify as many colluders as possible while maintaining a
low probability of false accusation, e.g. Pfp = 10−3.

Accusation Process

The optimal single decoder is given by [2, Sec. 3.1]:

sj =
m
∑

i=1

log
P(y(i)|xj(i), p(i))

P(y(i)|p(i))
, (1)

with

P(y(i) = 1) =
∑c

σ=0 θ(σ)P(σ|p(i)), (2)

P(σ|p(i)) = (cσ) p(i)
σ(1− p(i))c−σ, (3)

P(y(i) = 1|xj(i)) =
∑c−1+xj(i)

σ=xj(i)
θ(σ)P(σ|xj(i), p(i)), (4)

P(σ|x, p(i)) =
(

c−1
σ−x

)

p(i)σ−x(1− p(i))c−1−σ+x. (5)
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Overview of the iterative, side-informed decoder.

Colluders are expected to have higher scores than innocent users. We
accuse users whose scores are higher than threshold τ .

Three cases are possible:

• (i) m is big enough and the c colluders’ scores are ranked first,

• (ii) some but not all the colluders are ranked first,

• (iii) m is too short and one innocent has the biggest score.

Iterative decoding In case (ii), at least one colluder is caught
and added as side information to the set XSI. This allows

•More discriminative scores

•More accurate collusion model estimation

Let ρi =
∑

j∈XSI
xj(i). This changes equations (2) - (5) to:

(2) ←

c−k+ρi
∑

σ=ρi

θ(σ)P(σ|p(i)),

(3) ←
(

c−k
σ−ρi

)

p(i)σ−ρi(1− p(i))c−k−σ+ρi,

(4) ←

c−k−1+xj(i)+ρi
∑

σ=xj(i)+ρi

θ(σ)P(σ|xj(i), p(i)),

(5) ←
(

c−k−1
σ−ρi−x

)

p(i)σ−ρi−x(1− p(i))c−k−1−σ−ρi+1.

Thresholding

•Generate new codewords of innocents based on p and compute
their scores.

• Estimate the threshold τ such that the probability of being an
innocent is below ǫ using Monte-Carlo simulation.

• Large n implies a too small probability ǫ = n−1Pfp. For this reason
we implement an estimator based on rare event analysis [3].

Collusion Model Estimation

For an estimated collusion size ĉ, the collusion process θ can be
estimated from the observation of y:

θ̂ = argmax
θ∈[0,1]ĉ+1 s.t. θ(0)=0,θ(ĉ)=1

logP(y|p,θ) (6)

with P(y|p,θ) =
∏m

i=1 P(y(i)|p(i)).

Due to lack of identifiability, one cannot estimate c, but only θ̂ for a
given ĉ. We impose ĉ = cmax (performance degradation is illustrated
below).
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Fast Score Computation

For a large number of users, score computation is limited by memory
bandwidth. Two speedup techniques can be used:

Weight precomputation Computation of an individual’s score
sj can be written as sj =

∑m
i=1W [xj(i)](i) where W is a 2 × m

matrix containing the precomputed log-likelihood ratios:

W [0](i) = log
P(y(i)|p(i))

P(y(i)|0, p(i))
,

W [1](i) = log
P(y(i)|p(i))

P(y(i)|1, p(i))
.

Aggregation b bits are grouped together into an unsigned integer
data type native to the processor, e.g. b = 32. Chunks of a ≤ b bits,
e.g. a = 8, can be processed in parallel using a table lookup. The
weight matrix W is turned into an aggregated weight matrix W′ of
size 2a × ⌈m/a⌉ with elements

W ′[q](i′) :=

a
∑

l=1

W [bit(q, l)](a(i′ − 1) + l) (7)

where 1 ≤ i′ ≤ ⌈m/a⌉, q ∈ {0, 1}a, and bit(q, l) denotes the l-th bit
of value q.
Best performance is obtained for a = 8 according to experiments.
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Aggregation

Score computation (n = 105, m = 2048) with aggregation a on
Intel Core2 (2.6 GHz). Naive stores a codeword bit in a byte.

Source Code (C++)

Available at http://www.irisa.fr/texmex/people/furon/

src.html.

Funded by French national project MEDIEVALS ANR-07-AM-005.

Decoding Results and Comparison

Kuribayashi setup [4] n = 10 000 users, code length m =
10 000, Pfp = 10−4, majority voting collusion
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Jourdas & Moulin setup [5] n = 33 554 432 users, code length
m = 7 440, Pfp = 10−3, interleaving collusion and AWGN (σ2 = 1)
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For c = 5, Jourdas & Moulin only accuse one colluders with Pfn =
0.004. The proposed iterative decoder accuses 4.95 colluders, Pfn =
0.0016. We also compare against a symmetric Tardos decoder.

Runtime Results

We analzye the runtime of the decoder’s components (model estima-
tion, thresholding, score computation) on a single core of an Intel
Core2 CPU (2.6 GHz) and plot the average number of iterations.

Kuribayashi setup
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Jourdas & Moulin setup
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