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Problem Statement

◮ Find geometric distortion constraint for watermarking of
polygonal 2D vector data such that no line segments cross due
to vertex perturbation.

◮ Application: watermarking of 2D GIS data, CAD models, etc.

◮ Similar in concept to just-noticeable difference (JND)
constraint [Podilchuk and Zeng, 1998] for raster data.



Maximum Perturbation Regions

◮ The Maximum Perturbation Region (MPR) of a vertex v of a
planar straight-line graph G = (V ,E ) is the region R(v) such
that as long as the vertex is displaced within its R(v) (and the
incident line segments accordingly), the resulting set of edges
remains crossing-free.

◮ We show how to efficiently compute MPRs based on the
Voronoi diagram of G and test the impact on a well-known
watermarking scheme [Doncel et al., 2007].
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Example

(a) Data with MPRs (b) Watermarked data (c) Corrected data



Maximum Perturbation Region Computation
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Phase 1: For each vertex v we determine the disc D(tv ) centered
at v with maximum radius tv such that D(tv ) and the area of the
resulting ’hoses’ is contained within the Voronoi cells of v and its
incident half-line segments l̂j .
Phase 2: The radius of R(v) is given by the minimum radius of the
discs adjacent to v and tv .



Perturbation Correction

In case a watermarked vertex v ′ lies outside its disc R(v), v ′ is
projected on the MPR boundary creating a new watermarked
vertex v ′′ subject to the geometric distortion constraint:

v ′′ = v +
rv · (v ′ − v)

|v ′ − v |



Computational Issues

◮ Voronoi diagrams can be computed in expected O(n log n)
time [Held, 2001].

◮ Phase 1 and phase 2 of the MPR computation can be done in
linear time.

MPR correction can be performed in two ways:

1. All vertices ouside their MPR are projected on their MPR
boundary (in O(n) time).

2. Only vertices with actually cause line segments to cross are
corrected (denoted conditional MPR (cMPR), in O(n2) time
due to line segment intersection problem).



Watermark Embedding

Use vector graphics watermarking approach based on Fourier
descriptors [Solachidis and Pitas, 2004]. Polygonal chains are
considered as a complex signal with the real and imaginary
components being the x and y coordinates of the 2D vertices.

Multiplicative spread-spectrum embedding of a watermark w,
wk ∈ {−1, 1}, in a vector of selected complex DFT coefficient
magnitudes |x̃ | of length n with strength α can be written

|x̃ ′k | = |x̃k |(1 + αwk) where 1 ≤ k ≤ n.



Watermark Detection

◮ Linear Correlation detection on received signal z against
threshold Tρ [Solachidis and Pitas, 2004]

ρLC =
1

n

n
∑

k=1

|z̃k |wk > Tρ.

◮ Likelihood Ratio Test (LRT) conditioned on Rayleigh
distribution host signal model [Doncel et al., 2007]

ρLRT =

n
∑

k=1

|z̃k |2
(1 + αwk)2 − 1

2β̂2
k(1 + αwk )2

> Tρ

where β̂ is the ML estimate of the Rayleigh distribution
parameter.



Detection Performance
Detection statistics ρLC and ρLRT follow a Normal distribution
under both hypothesis H0 and H1 [Barni and Bartolini, 2004];
parameters µ and σ can be estimated to determine a threshold
Tρ =

√
2σ̂ρ|H0

erfc−1(2Pf ) + µ̂ρ|H0
and the experimental

probability of miss

Pm =
1

2
erfc

(

µ̂ρ|H1
− Tρ√

2σ̂ρ|H1

)

.
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Experimental Results

◮ Carp data set consisting of 24134 vertices, 4890 vertices
watermarked.

◮ Probability of false-alarm Pf = 10−6. Simulation with 1000
test runs.
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Conclusion and Outlook

◮ Introduced framework for watermarking of 2D vector data
incorporating a geometric (MPR) distortion constraint.

◮ Applicable to robust watermarking schemes in coordinate and
transform domain.

◮ Source code and supplementary material available at
http://www.wavelab.at/sources.

◮ Extension to 3D vector data planned using conforming
Delaunay triangulations.

http://www.wavelab.at/sources
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