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Abstract

Mixed Boolean-Arithmetic (MBA) expressions are frequently used for obfuscation. As they
combine arithmetic as well as Boolean operations, neither arithmetic laws nor transformation
rules for logical formulas can be applied to suitably complex expressions, making MBAs hard
to simplify and solve.

In 2019, Liu et al. demystified linear MBAs, leveraging a transformation between the set
B = {0, 1} of bit values and the set Bn of words of length n ∈ N for linear MBAs, originally
introduced by Zhou et al. in 2007. With their MBA-Blast and MBA-Solver algorithms, they
outperform existing tools noticably in terms of performance as well as ability to simplify of such
MBAs.

We propose a surprisingly simple algorithm called SiMBA that improves upon MBA-Blast
and MBA-Solver in that it can deobfuscate all linear MBAs, does not miss particularly simple
solutions and takes only a fraction of their runtime.

1 Introduction

Mixed Boolean-arithmetic (MBA) transformation is a currently popular technique for code obfus-
cation introduced in the year 2006 by Zhou et al. [17, 18]. Simple expressions such as constants are
replaced by semantically equivalent mixed Boolean-arithmetic expressions in order to make (com-
monly binary) code harder understandable and thereby help hide secret information such as data
and algorithms — e.g., used for watermarking or license checks — via introduction of exaggerated
complexity. The goal is to rewrite passages which are easily identifiable in program code as well as
in binaries into expressions which are not easily referrable to the original ones.

MBA expressions contain logical as well as arithmetic operations. Due to a bad interaction
between those, they cannot be resolved straightforward using any established SAT solvers or mathe-
matical tools which either concentrate on logical or on arithmetic expressions. However, with the rise
of methods to generate MBAs, a variety of tools for their deobfuscation, i.e., simplification, or verifi-
cation are being developed. They use various techniques such as pattern matching (e.g., SSPAM [5]),
neural networks (e.g., NeuReduce [7]), bit-blasting (e.g., Arybo [10]), stochastic program synthe-
sis (e.g., Stoke [14], Syntia [1] and Xyntia [12]) or synthesis-based expression simplification (e.g.,
QSynth [3] and msynth [2]).

Sufficiently complex MBAs are commonly generated by a rewriting technique, iteratively re-
placing subexpressions by equivalent, more complex ones using a codebook of MBA identities [15].
Obviously, such a codebook can also be used for an attempt to simplify complex MBAs. Since in gen-
eral MBA expressions cannot be expected to appear in a codebook right away, an SMT solver can be
used for equivalence checks against the listed simpler MBAs. MBAs can further be hardened against
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deobfuscation by applying additional encoding, invertible functions or point functions [18, 15]. This
may introduce large constants which pose problems to many deobfuscation tools.

Recently, a first algorithm for fully algebraic attacks has been developed, incorporated in the
highly related tools MBA-Blast [11] and MBA-Solver [16]. These make large progress to the deob-
fuscation of especially so-called linear MBAs as well as of polynomial MBAs with small restrictions.
As written in their related papers and supported by our own experiments, these tools outperform
other existing tools significantly for these classes of MBAs when it comes to simplification success
and runtime. They are based on an alternative method for generating MBAs relying on a transfor-
mation of linear MBAs between the n-bit space for any n ∈ N and the 1-bit space (in other words,
between bitwise and logical expressions) first described by Zhou et al. [18] and basically reverse the
process for deobfuscation.

Motivated by their approach, we contribute a related, but different algorithm which we call
SiMBA (for Simple MBA Simplifier) and which is characterized by its simplicity, its competitive
performance, its genericness derived through an implementation which is independent of the number
of variables and the MBAs’ complexity as well as the detail that it avoids a full transformation to
the 1-bit space, hence does not require a decomposition of an input MBA into terms consisting of
bitwise expressions and constant factors. Therefore it allows more flexibility concerning the structure
of its input. Its implementation as well as our self-generated datasets for its evaluation are publicly
available on Github [13]. Moreover, we give a step-by-step deduction of the fundamental theorems
the mentioned peer tools are based on.

In the next section we provide a definition of linear and polynomial MBAs. Additionally we
describe how MBAs equivalent to a specific target function, that may itself be a linear MBA, can be
generated. On the one hand this is relevant for the generation of MBAs for experiments and on the
other hand the theorems presented there also pave the way for our deobfuscation technique that is
also used in variations by peer tools. We revisit the groundbreaking theorem of Zhou et al. [18] and
provide clear verifications for statements used for the generation of linear MBAs which are aimed
at substitute the zero constant, a bitwise expression or even another linear MBA as well as for their
deobfuscation.

The most comparable peer tools MBA-Blast and MBA-Solver which provide efficient deobfusca-
tion algorithms for polynomial MBAs are described in the following section. This section additionally
gives an overview of our SiMBA algorithm and its differences to MBA-Blast and MBA-Solver, and
provides a proof of its formal foundation. Additionally, we provide results of experiments comparing
SiMBA to these tools.

Finally, we point out our main contributions and give an outlook on the simplification of nonlinear
MBAs which may use our approach too after identification of its linear parts.

2 Preliminaries

2.1 Linear Mixed Boolean-Arithmetic Expressions

Mixed Boolean-arithmetic expressions mix Boolean expressions with arithmetic ones. As there
is obviously a strong connection between logical and bitwise operations, the concept of Boolean
expressions is often intermixed with that of bitwise ones. While logical operators basically operate
on B = {0, 1}, i.e., single bits, bitwise operations are equivalently applied to all bits of n-bit words
in Bn for any fixed n ∈ N. This link is crucial for recent findings about MBAs, e.g., a generation
algorithm proposed by Zhou et al. [18] and the highly related deobfuscation tools MBA-Blast [11]
and MBA-Solver [16].

We prefer the notion of bitwise expressions which fits better to our context. Hence we use the
operators & (bitwise conjunction), ∧ (bitwise exclusive disjunction), | (bitwise inclusive disjunction)
and ∼ (bitwise negation) rather than ∧ (logical conjunction), ⊕ (logical exclusive disjunction), ∨
(logical inclusive disjunction) and ¬ (logical negation).

Although we are mainly interested in linear MBAs, we state the — more general — definition of
a polynomial MBA first.
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Definition 1. Let B = {0, 1} and n, t ∈ N. A polynomial mixed Boolean-arithmetic expression
(MBA) with values in Bn and t variables is a function e : (Bn)

t → Bn of the form

e (x1, . . . , xt) =
∑
i∈I

ai
∏
j∈Ji

eij (x1, . . . , xt) ,

where I ⊂ N and Ji ⊂ N, for i ∈ I, are index sets, ai ∈ Bn are constants and eij are bitwise
expressions of x1, . . . , xt for j ∈ Ij and i ∈ I.

A linear MBA is a special kind of a polynomial one where each term consists of only one bitwise
expression and an optional constant factor.

Definition 2. Let B = {0, 1} and n, t ∈ N. A linear mixed Boolean-arithmetic expression (MBA)
with values in Bn and t variables is a function e : (Bn)

t → Bn of the form

e (x1, . . . , xt) =
∑
i∈I

aiei (x1, . . . , xt) ,

where I ⊂ N is an index set, ai ∈ Bn are constants and ei are bitwise expressions of x1, . . . , xt for
i ∈ I.

These definitions’ origin lies in the groundbreaking paper of Zhou et al. [18] in which MBAs
are proposed as a promising technique for obfuscation since logical and arithmetic operators do not
interact nicely enough for MBAs to be easily resolvable and not much theory on MBAs existed at
that time. In that paper, they also propose a much noticed method for generating linear MBAs. It
relies on a fundamental relation between Boolean and bitwise expressions.

Theorem 1. Let n, s, t ∈ N, xi variables over Bn for i = 1, . . . , t and ej : (Bn)
t → Bn bitwise

expressions on these variables for j = 1, . . . , s. Let

e (x1, . . . , xt) =

s∑
j=1

ajej (x1, . . . , xt)

be a linear combination of these bitwise expressions with coefficients aj ∈ Bn for j = 1, . . . , s and
hence a linear MBA. Furthermore let, again for j = 1, . . . , s, ej : Bt → B be the logical expression
corresponding to ej. Enumerate the possible combinations of zeros and ones for the variables by

Bt = {b1, . . . , b2t} arbitrarily, but fixed, and let A = (vij) ∈ B2t×s be the matrix of truth values of
the ej’s with vij = ej(bi).

Then e ≡ 0 if and only if the vector Y = Ya = (a1, . . . , as)
T is a solution of the linear equation

system AY = o over Bn, where o = (0, . . . , 0)T is the zero vector in B2t .

Note that the theorem’s original statement only requires that the linear equation system is
solvable, but this does not suffice in general. The concrete vector is required to be a solution.
As we will see, this theorem is very crucial for the generation of linear MBAs as well as for their
deobfuscation, but the latter purpose remained unnoticed for a long time, possibly due to its incorrect
formulation.

Apart from that, Zhou et al. [18] also show that each bitwise expression e of an arbitrary number

t ∈ N of variables has a nontrivial linear MBA representation e =
∑2t

j=1 ajej with bitwise expressions

ej ̸= e and constants aj for j = 1, . . . , 2t. Moreover, there are infinitely many MBAs in total.
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2.2 Generation of Linear Mixed Boolean-Arithmetic Expressions

Theorem 1 implies a method for generating linear MBAs which is very contrary to the codebook
approach proposed in other sources. While it suffers a bit from the very specific shape which
generated expressions will have, its advantages are that it can choose from an infinite set of MBAs,
and a linear MBA always exists for a given input.

For a fixed number t of variables and another fixed number s of bitwise expressions, any matrix
A ∈ B2t×s containing only zeros and ones can be used for generating a linear MBA for t variables
over Bn for some n ∈ N if its columns are linearly dependent.

For given bitwise expressions e1, . . . , es and its truth value matrix A with linearly dependent
columns, a solution of the linear equation system AY = o gives the constants aj for a linear MBA
e =

∑s
j=1 ajej that evaluates to zero for all possible inputs. As a consequence, any of those s bitwise

expressions, say, ej for some j ∈ {1, . . . , s}, can be expressed as a linear combination of the other
ones by multiplying e by aj ’s multiplicative inverse in Bn. Note that if A’s columns were linearly
independent, the only solution of the equation system would be the zero vector, which is of course
not constructive.

Alternatively, one may generate all or a subset of A’s columns randomly and construct bitwise
expressions fitting the corresponding truth values. This will add more variety, but if all bitwise
expressions are generated randomly, it is in general not possible to find an MBA representing a
bitwise expression (in place of zero) easily.

This is where the following extension of Theorem 1 comes in handy.

Corollary 1. Let n, s, t ∈ N and let the bitwise expressions e1, . . . , es and e as well as the logical
expressions e1, . . . , es and the matrix A be defined as in Theorem 1. Furthermore, let f be another
bitwise expression of t variables and let f be its logical equivalent.

Then e ≡ f if and only if AYa = F , where Ya = (a1, . . . , as)
T is the vector of e’s coefficients and

F =
(
f(b1), . . . , f(b2t)

)T
is the vector of f ’s evaluations on all possible combinations of zeros and

ones for the variables, restricted to one bit.

Proof. If e ≡ f , then e1 := e− f ≡ 0. Since e1’s truth table matrix is given by A1 = (A,F ), i.e., e’s
truth table matrix with an appended column containing f ’s truth values, and its coefficient vector
is Y1 = (a1, . . . , as,−1), it follows from Theorem 1 that A1Y1 = o with o = (0, . . . , 0)T . That is,∑s

j=1 ajej(bi)− f(bi) = 0 for all i = 1, . . . , 2t. The correctness of this implication follows.
The other one, i.e., that AYa = F implies that e ≡ f , is proven by performing these steps in

reversed order.

This theorem allows one to find a linear MBA representing an arbitrary bitwise expression f via
a method equivalent to that described above.

Finally, we generalize this even more for affine integer combinations of bitwise expressions.

Corollary 2. Let n, s, t ∈ N and let the bitwise expressions e1, . . . , es and e as well as the logical
expressions e1, . . . , es and the matrix A be defined as in Theorem 1. Furthermore, let, for some
m ∈ N, f =

∑m
k=1 αkfk + β be an affine combination of bitwise expressions of t variables with

α1, . . . , αm, β ∈ Bn. Additionally, let g =
∑m

k=1 αkfk − β, where we write −β for an integer that
sums up to zero with β in the modular field Bn and fk is the logical equivalent to fk for k = 1, . . . ,m.

Then e ≡ f if and only if AYa = F , where Ya = (a1, . . . , as)
T is the vector of e’s coefficients and

F = (g(b1), . . . , g(b2t))
T

is the vector of g’s evaluations on all possible combinations of zeros and
ones for the variables.

Proof. The proof works similarly as that of Corollary 1. In order to apply Theorem 1, we want to
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express the constant term as a multiple of a bitwise expression which evaluates to the n-bit number
which has ones everywhere, i.e.,

∑n
i=1 2

i−1 × 1 = 2n − 1 ≡ −1 mod 2n. That is, the coefficient β’s
sign is reversed in the application of the theorem. The rest follows.

Corollary 2 allows us to find arbitrarily complex MBAs with a nearly arbitrary number of vari-
ables representing a large variety of affine combinations of bitwise expressions. We list some simple
examples with two variables here:

x+ y → 2 ((x& y) | (∼x&∼y))− 2 (∼x& y)

+ 3 ((∼x& y) | (x&∼y))− 2 · ∼y

3 735 936 685 · ∼x → −3 735 936 685 (x&∼y) + 3 735 936 685 (y | ∼x)

+ 3 735 936 685 ((∼x& y)|(x&∼y))− 3 735 936 685 y

3 735 936 685 (x ∧ y) + 49 374 → 3 735 911 998 · ∼x− 24 687 (x | ∼y)

− 3 735 936 685 (y | ∼x) + 3 735 911 998 (y | x)

What the corollary additionally suggests is that an affine combination of bitwise expressions is a
linear MBA; that is, there is no need for a definition of, say, affine MBAs. Against this background,
the corollary is related to Theorem 1 in [16] while differently and probably more constructively
proven. It states that two linear MBAs are equivalent if and only if their signature vectors coincide.
We restate it for the sake of completeness:

Corollary 3. Let e1 and e2 be linear MBAs over words of the same length n with truth table
matrices A1 and A2, resp., and coefficient vectors Y1 and Y2, resp. Then e1 ≡ e2 if and only if
A1Y1 = A2Y2 or, equivalently, their linear combinations of logical expressions corresponding to their
bitwise expressions evaluate to the same values for all bi, i = 1, . . . , 2t as defined previously.

3 Deobfuscation of Linear Mixed Boolean-Arithmetic Ex-
pressions

The mixed Boolean-arithmetic transform technique is commonly considered to be a powerful ob-
fuscation method due to the incompatibility of its operands. However, Theorem 1 and specifically
Corollary 3 prepare an algebraic method which may circumvent this issue. This method has been
first elaborated and implemented in the tools MBA-Blast and MBA-Solver which outperform exist-
ing tools significantly regarding success frequency and runtime at the deobfuscation of MBAs that
have a specific shape.

3.1 MBA-Blast and MBA-Solver

MBA-Blast and MBA-Solver are two highly related tools for efficient deobfuscation of MBAs. Both
are available in a prototype state on Github [8, 9]. While the former can simplify polynomial MBAs,
the latter applies a more efficient approach for those and attempts to resolve nonpolynomial MBAs
as well. However, for that it needs a hint of a polynomial MBA included in a nonpolynomial MBA,
whose replacement by a variable would cause it to be polynomial, as well as an additional input,
making it irrelevant for practical applications at least in this prototype state.

The tools as available on Github strongly suffer from the requirement for prior knowledge about
MBAs to resolve. E.g., MBAs have to meet exactly the canonical representation used in Definition 1
and the user has to know whether they are linear, polynomial or nonpolynomial (with additional
required knowledge in the latter case). A check for MBAs to be linear or polynomial, resp., is not
performed.
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The tools are implemented for simplifying MBAs working on two to four variables. First of
all, each space of bitwise expressions using t ∈ N variables has a basis of 2t expressions (e.g., 16
expressions for t = 4 variables) each bitwise expression can be represented as a linear combination
of. The MBA-Blast algorithm starts by replacing each bitwise expression occuring in an input MBA
by such a linear combination. This is done via their evaluation for all possible combinations of truth
values for the variables and hence leveraging Theorem 1. Although this crucial finding dates back
to the year 2007 [18], it has seemingly never been recognized to be readily usable for deobfuscation
before due to its incorrect statement — see [4] or also the MBA-Blast paper [11] whose authors
claim to be the first to prove it.

In contrast to that, MBA-Solver computes a so-called signature vector for a whole linear MBA
leveraging Corollary 3, again via an evaluation of its bitwise expressions for all possible combinations
of truth values, but here those are immediately multiplied by the bitwise expressions’ coefficients
and summed up while the linear combinations have to be summed up with MBA-Blast in order to
derive a linear combination for a whole MBA. Hence, MBA-Solver saves this step, and consequently
significant runtime.

More involved simplification steps, including simplification using Python’s SymPy package, are
necessary for nonlinear MBAs. To the best of our understanding, different bases are used for MBA-
Blast and MBA-Solver. While the former uses, e.g., for two variables the vector (x, y, x& y,−1) as
a basis, the latter uses (∼(x | y),∼(x | ∼y), x & ∼y, x & y). The reason for this discrepancy is not
known to the authors, but we assume that this is just an exemplary base and a full implementation
of this prototype would, as indicated in [16], try various bases and choose the simplest result.

Alternatively, if the resulting signature vector, now also computed for a whole linear MBA with
MBA-Blast, is nice enough and corresponds to one single bitwise expression, this one is the simplifi-
cation result. In this case this expression is found in a lookup table listing standard representations
of bitwise expressions for all possible combinations of the variables’ truth values.

While the step of finding a linear combination of basis expressions can be implemented genericly
to work for an arbitrary number of variables, usage of a lookup table for finding single bitwise
expressions is only possible for a low number of variables. Note that a lookup table for t = 4
variables has 22

4

= 65 536 entries, and one for t = 5 variables would have 22
5

= 4294 967 296 entries.
Due to this restriction and since it cannot be expected in general that an MBA can be resolved

to one single bitwise expression, the tools might miss the nicest solutions in many cases. However,
this may be acceptable since their main purpose is to make expressions easier for verification using
SMT solvers [9] and linear combinations might be nice enough.

For input expressions which satisfy the requirements on their structure, MBA-Blast and MBA-
Solver indeed clearly outperform other existing tools regarding success rate and runtime.

3.2 Our Algorithm

3.2.1 Overview

As MBA-Blast and MBA-Solver, SiMBA is written in Python. Although it was developed without
knowledge of MBA-Solver’s exact technique, it uses a rather similar technique also involving a
computation of what one may call a signature vector in the first step. However, while MBA-Blast
and MBA-Solver use Corollaries 1 and 3, resp., and hence operate in the 1-bit space B = {0, 1}, we
do not fully perform this transformation from Bn (for n ∈ N) to B. Rather we immediately evaluate
the whole linear MBA for the combinations of truth values and hence get vectors which live in Bn.
The following theorem provides the formal basis for that.

Theorem 2. Let e and f be linear MBAs over words of the same length n and let t ∈ N be their
(maximum) number of variables. Then e ≡ f if and only if e(bi) = f(bi) for all bi ∈ Bt, i = 1, . . . , 2t,
as defined previously.

Note that the difference to Corollary 3 is that we evaluate the bitwise expressions rather than
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their logical (1-bit) equivalents for the bi’s and hence get n-bit results. That implies that we do not
have to decompose a linear MBA into its terms and factors, but we can evaluate it as a whole.

Proof. We only have to prove one direction since the other one is trivial. We assume that e(bi) =
f(bi) for all bi, i = 1, . . . , 2t and write e =

∑s
j=1 ajej and f =

∑m
j=1 αjfj for s,m ∈ N, a1, . . . , as,

α1, . . . , αm ∈ Bn and bitwise expressions e1, . . . , es, f1, . . . , fm.
We have for all i ∈ {1, . . . , 2t} that

∑s
j=1 ajej(bi) =

∑m
j=1 αjfj(bi). Now let ej be the logical

equivalent of ej for j = 1, . . . , s and f j be the logical equivalent of fj for j = 1, . . . ,m. Furthermore,
for i = 1, . . . , 2t, we use the same notation for bi with one bit as for bi with n bits, but we note that
the n-bit version has zeros in the additional n− 1 bits of its entries.

We want to show that
∑s

j=1 ajej(bi) =
∑m

j=1 αjf j(bi) for all i ∈ {1, . . . , 2t}. Then we may use

Corollary 3. We have the following for any i ∈ {1, . . . , 2t} after already interchanging the sums:

s∑
j=1

ajej(bi) +

n∑
k=2

2k−1
s∑

j=1

ajej(o)

=

m∑
j=1

αjf j(bi) +

n∑
k=2

2k−1
m∑
j=1

αjf j(o),

where we write o for the zero vector in Bt and the sum
∑n

k=2 2
k−1 is obviously constant (2n − 2, in

more detail).
If it holds that

∑s
j=1 ajej(o) =

∑m
j=1 αjf j(o), the proof is finished. We consider the equation

for the specific bi′ ∈ Bt which assigns zero to every variable:

(2n − 1)

s∑
j=1

ajej(o) = (2n − 1)

m∑
j=1

αjf j(o).

This shows that
∑s

j=1 ajej(o) =
∑m

j=1 αjf j(o).

Depending on the number of variables, the SiMBA algorithm is comprised of two or three steps
described subsequently in more detail:

1. For an input MBA e, a signature vector F is derived by evaluating e for all possible combina-
tions of zeros and ones for the variables.

2. Based on F , the input MBA is transformed into a linear combination of base bitwise expres-
sions, using Theorem 2. This is in any case a valid, but not necessarily optimal solution.

3. If the resulting linear combination uses fewer than three variables, various attempts to find a
simpler expression via lookup tables are performed.

The main advantage of our approach is that due to the immediate evaluation, one does not have
to decompose an MBA into terms of bitwise expressions and their coefficients and hence does not
require a concrete structure of input expressions. Optionally a check for the MBA’s linearity can be
performed. Moreover we expect a better performance especially for complex MBAs with a higher
number of variables.
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3.2.2 Computing the Signature Vector

In order to be able to use Theorem 2, we evaluate an input expression e on all possible combinations
of zeros and ones for the variables and obtain a vector F = e(b1, . . . , b2t). In order to be most generic,
for k ∈ {1, . . . , 2t} and i ∈ {1, . . . , t}, bk assigns the value 1 to the variable xi if k’s remainder after
a division by 2i is larger than 2i−1:

b1 = (0, 0, 0, . . . , 0),

b2 = (1, 0, 0, . . . , 0),

b3 = (0, 1, 0, . . . , 0),

b4 = (1, 1, 0, . . . , 0),

...

b2t = (1, 1, 1, . . . , 1).

As an example, we consider the simple linear MBA e(x, y) = 3 735 936 685 (x ∧ y)+ 49 374. In B,
we would get a vector

(e′(0, 0), e′(1, 0), e′(0, 1), e′(1, 1)) = (0, 1, 1, 0)

for the bitwise part e′(x, y) = x ∧ y. This vector would have to be multiplied by the coefficient and
the constant would have to be subtracted (see Corollary 2) in order to obtain a vector F ′

1. In our
setting, we immediately compute

F1 = (e(0, 0), e(1, 0), e(0, 1), e(1, 1))

= (49 374, 3 735 986 059, 3 735 986 059, 49 374)

= F ′
1 + 2× 49 374.

We see another difference when we consider the negation f(x) = ∼x. Rather than using the
signature vector

F ′
2 = (f(0), f(1)) = (1, 0),

we use
F2 = (f(0), f(1)) = (−1,−2) = (−0− 1,−1− 1),

where we evaluate f on B in the former evaluation and on Bn in the latter one.

3.2.3 Finding a Linear Combination

The next step is the derivation of a linear combination of basis elements for bitwise expressions with
t ∈ N variables. While in theory any basis can be used, we want to describe a very generic approach.
If we enumerate the variables as x1, . . . , xt, the following is a basis for t variables:

(1,

x1, . . . , xt,

x1 & x2, . . . , x1 & xt, x2 & x3, . . . , x2 & xt, . . . , xt−1 & xt,

x1 & x2 & x3, x1 & x2 & x4, . . . , xt−2 & xt−1 & xt,

...

x1 & · · ·& xt).
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It has the following truth table A:



1 x1 x2 ··· x1&x2 x1&x3 ··· x1&···&xt

(0,0,0,...,0) 1 0 0 · · · 0 0 · · · 0
(1,0,0,...,0) 1 1 0 · · · 0 0 · · · 0
(0,1,0,...,0) 1 0 1 · · · 0 0 · · · 0
(1,1,0,...,0) 1 1 1 · · · 1 0 · · · 0
(0,0,1,...,0) 1 0 0 · · · 0 0 · · · 0
(1,0,1,...,0) 1 1 0 · · · 0 1 · · · 0

...
...

...
. . .

...
...

. . .
...

(1,1,1,...,1) 1 1 1 · · · 1 1 · · · 1


If we now want to solve a linear equation system AY = F , where F is a vector derived in the

first step, we do not need much linear algebra and no utilities. If we eliminate A’s columns and rows
wisely, we permanently have a row which only has one 1 in it until we have computed all coefficients
in Y .

In more detail, the first row in which we have a 1 for a variable xi for i ∈ {1, . . . , t} is the
(2i−1 + 1)-th one and the first row in which we have a 1 for a conjunction xi1 & · · · & xim with
i1 < · · · < im for ij ∈ {1, . . . , t}, j ∈ {1, . . . ,m}, m ∈ N is the row number

∑m
j=1 2

ij−1 + 1. These
numbers indicate F ’s entries which we find conjunctions’ coefficients in. Similarly, we constantly
have to apply the corresponding manipulations for all of F ’s entries with indices of rows in which
A’s column has a 1 too.

This approach cannot fail if we handle the conjunctions in an order depending on their numbers
of variables, starting with the constant in row one. As soon as this is finished, we have a first viable
solution in terms of a linear combination of base expressions.

Returning to the first example, F1’s first entry 49 374 is the constant term which has to be
subtracted from F1’s other entries to get (0, 3 735 936 685, 3 735 936 685, 0). Now, the coefficient for
both variables — we call them x and y again — is 3 735 936 685, and the vector is modified to
(0, 0, 0,−2× 3 735 936 685). This implies the following linear combination:

e(x, y) ≡ 49 374 + 3 735 936 685x+ 3735 936 685 y

− 7 471 873 370 (x& y).

3.2.4 Finding a Simpler Solution

In order not to miss very simple results, we perform an alternative refinement attempt similar to that
of MBA-Blast and MBA-Solver, but more involved. For that we use truth tables for 1 ≤ t ≤ 3. If an
input expression has more than three variables, but not all of them appear in the linear combination,
we can reduce the number of variables and potentially perform this refinement step too.

As indicated before, we cannot identify a negation just by flipped bits, but we can use the identity
∼x = −x − 1. We perform the following attempts to find a result which has fewer terms than the
linear combination in the following order using a lookup table and finish as soon as an attempt is
successful:

1. If all entries of F coincide, we have a constant expression.

Example for t = 2: The vector

(49 374, 49 374, 49 374, 49 374)

obviously corresponds to
e(x, y) = 49 374.

2. If F has two unique entries and its first entry is zero, we replace the nonzero element a by
1, find the lookup table’s entry for the corresponding truth vector and multiply the found
expression by a.

Example for t = 2: The vector
(0, 49 374, 49 374, 0)
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corresponds to
e(x, y) = 49 374 (x ∧ y).

3. If F has two unique entries a and b, both of them are nonzero, w.l.o.g., b ≡ 2a mod 2n, and
F ’s first entry is a, we can express the result in terms of a negated single expression. We
replace all occurences of a by zeros and that of b by ones, find the corresponding expression
in the lookup table, negate it, and multiply it by −a.

Example for t = 2: For the vector

(49 374, 98 748, 98 748, 49 374),

we have a = 49 374 and b = 98 748. The vector (0, 1, 1, 0) corresponds to x ∧ y. Hence we have
a result

e(x, y) = −49 374 · ∼(x ∧ y).

4. If F has two unique entries a and b, but the previous cases do not apply, and F ’s very first
entry is a, we first identify a as the constant term. Then we find an expression with ones
exactly where F has the entry b in the lookup table, multiply it by b− a and add the term to
the constant.

Example for t = 2: For the vector

(49 374, 3 735 936 685, 3 735 936 685, 49 374),

we have a constant a = 49 374 and, with b = 3735 936 685, relate the vector (0, b, b, 0) to x ∧ y
and arrive at the expression

e(x, y) = 49 374 + 3 735 887 311 (x ∧ y).

5. If F has two unique nonzero entries a and b and its first one is zero, we split it into two vectors
with ones where F has entries a or b, resp., find the corresponding expressions in the lookup
table, multiply them by a and b, resp., and add the terms together.

Example for t = 2: We split the vector

(0, 3 735 936 685, 3 735 936 685, 49 374)

into the vectors (0, 0, 0, a) and (0, b, b, 0) with a = 49 374 and b = 3735 936 685, relate the
former to x& y and the latter to x ∧ y and arrive at the expression

e(x, y) = 49 374 (x& y) + 3 735 936 685 (x ∧ y).

6. If F has three unique nonzero entries a, b and c and its first one is 0, we try to express one
of them as a sum of the others modulo 2n, e.g., a ≡ b + c. In that case we split F into two
vectors with ones where F has entries b or c, resp., or a, find the corresponding expressions in
the lookup table, multiply them by b and c, resp., and add the terms together.

Example for t = 2: We split the vector

(0, 3 735 936 685, 3 735 887 311, 49 374)

into the vectors (0, a, a, 0) and (0, b, 0, b) with a = 3735 887 311 and b = 49 374, relate the
former to x ∧ y and the latter to x and arrive at the expression

e(x, y) = 3 735 887 311 (x ∧ y) + 49 374x.
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7. If F has three unique nonzero entries a, b and c, its first one is 0 and the previous case does
not apply, we split it into three vectors with ones where F has entries a, b or c, resp., find the
corresponding expressions in the lookup table, multiply them by a, b and c, resp., and add the
terms together.

Example for t = 2: We split the vector

(0, 49 374, 3 735 936 685, 201)

into the vectors (0, a, 0, 0), (0, 0, b, 0) and (0, 0, 0, c) with a = 49 374, b = 3735 936 685 and
c = 201, relate them to x&∼y, ∼(x | ∼y) and x& y and arrive at the expression

e(x, y) = 49 374 (x&∼y) + 3 735 936 685 · ∼(x | ∼y)

+ 201 (x& y),

but we neglect it since it is not simpler than the linear combination

49 374x+ 3735 936 685 y + 201 (x& y).

8. If F has four unique nonzero values and its first one is nonzero, proceed as above after sub-
tracting the first entry, i.e., the constant term, and add that to the final result.

Note for t = 2: That is not relevant for t = 2 since the resulting term would never be simpler
than the linear combination of base expressions, but it may be for t = 3.

This list of attempts can in theory be extended, but a linear combination of a higher number of
bitwise terms from the lookup table might soon appear to be more complex than a linear combination
of an even higher number of very simple base expressions. For t = 2, the algorithm will definitely
find a simplest result.

3.3 Verification and Comparison

In order to classify our algorithm SiMBA, we perform four experiments. In the first, we use a
dataset of 10 000 linear MBAs with a varying number of variables provided by the Github repository
of NeuReduce [6] to verify correctness and universality.

Thereafter, we compare the algorithm with the most relevant peer tools. We can confirm the
results of [11] and [16] that Arybo, SSPAM and Syntia do not reliably simplify MBAs in general and,
if they do, need significantly more time. Hence, we are content with a comparison to MBA-Blast and
MBA-Solver only. Corresponding to those, we expect that they do similar things, but MBA-Solver is
more efficient since it saves a simplification step. Especially for expressions which can be simplified
to one single bitwise expression, the first step is omitted completely.

In the second experiment, we use MBA-Blast (partially), MBA-Solver and SiMBA to simplify all
linear MBAs provided by the former’s Github repository [9]. In the third one, we run experiments
on various MBAs that we generated for simple affine combinations of bitwise expressions using
Corollary 2. The final experiment indicates that an affine output encoding does not effect SiMBA’s
success rate and runtime.

All experiments are performed on a Debian Bullseye virtual machine run on an Intel Core i7-
12700K CPU and 3.6 GHz. The runtime was measured using Python 3.9 with the time package.
Furthermore, we use n = 64 bits in all experiments.

3.3.1 Verification on NeuReduce’s Dataset

In a first experiment, we run SiMBA on NeuReduce’s test dataset containing 10 000 expressions with
two, three, four or five variables.

We see in Table 1 that the entire dataset could be solved by our algorithm, meaning that each
expression was simplified to the corresponding simpler expression also contained in the dataset.
Moreover, the results show that the runtime only increases moderately with the number of variables
and even MBAs with five variables can be simplified fast.

11



Total Solved Runtime

2 variables 4 000 4 000 0.00024 s
3 variables 4 560 4 560 0.00069 s
4 variables 441 441 0.00084 s
5 variables 999 999 0.00147 s

Table 1: Verification of SiMBA on the dataset of linear MBAs provided by NeuReduce’s Github
repository [6]

3.3.2 Comparison on MBA-Solver’s Dataset

In Table 2, we compare SiMBA to MBA-Blast and MBA-Solver on the dataset provided by the
latter’s Github repository. Here we compare the results of the simplification by either tool with the
corresponding simpler expression that is also provided in this dataset. Since all tools simplify the
complex MBAs and their corresponding simpler version to exactly the same expressions in all cases,
we do not have to verify their equivalence using any SMT solver. To some degree we have to rely
on the MBAs’ correct generation by the dataset providers because some MBAs are too complex
for a verification using any SMT solver without prior simplification. The dataset includes 1 008
expressions with two, three or four variables.

Tool
Average runtime

2 variables 3 variables 4 variables
(551 expr.) (350 expr.) (107 expr.)

MBA-Blast 0.02501 s 0.06726 s —
MBA-Solver 0.00047 s 0.00121 s 0.14362 s

SiMBA 0.00024 s 0.00116 s 0.00257 s

Table 2: Comparison of MBA-Blast, MBA-Solver and SiMBA on the dataset of linear MBAs pro-
vided by MBA-Solver’s Github repository [9]

We see that our algorithm runs significantly faster than MBA-Blast and also faster — especially
for four variables — than MBA-Solver on the average. Unfortunately we cannot run MBA-Blast for
four variables since it is lacking any implementation for that case.

3.3.3 Comparison on Self-Generated MBAs

Leveraging Corollary 2, we have generated 1 000 different MBAs for each of the following very simple
expressions and a varying number of variables:

e1(x, y) = x+ y,

e2 = 49 374,

e3(x) = 3 735 936 685x+ 49 374,

e4(x, y) = 3 735 936 685 (x ∧ y) + 49 374,

e5(x) = 3 735 936 685 · ∼x.

We then simplified those expressions with the various tools. Previously we had to modify MBA-
Blast as well as MBA-Solver in order to accept our input expressions without impacting their logic
or runtime. Specifically we had to adapt the structure of our input expressions in order to use the
canonical representation of linear MBAs and we had to adapt the variable names.

Most importantly, we had to make sure that occuring constants are reduced modulo 2n, where
n is the number of bits. MBA-Blast and MBA-Solver do not care about this number of bits, but
this has two serious drawbacks: On the one hand we might not recognize the equality of expressions
which are equivalent for a certain number of bits, but not without any modular reduction. On the

12



other hand, the numeric NumPy types internally use C integers and throw an error if an overflow
occurs for them.

Expr.
Average runtime of MBA-Blast
2 variables 3 variables

e1 0.02695 s 0.05366 s
e2 0.02291 s 0.04833 s
e3 0.02851 s 0.05753 s
e4 0.03602 s 0.05699 s
e5 0.02782 s 0.05459 s

Table 3: Runtime of MBA-Blast on 1 000 MBAs generated for five expressions

MBA-Blast simplifies, independently of the number of variables, all expressions for e1, e2, e3 and
e5 — partially due to our modifications — exactly to those simpler expressions while expressions
for e4(x, y) = 3 735 936 685 (x ∧ y) + 49 374 are simplified to

3 735 936 685x+ 3735 936 685 y + 18 446 744 066 237 678 246 (x& y)

+ 49 374

since MBA-Blast only finds simple terms if an expression consists of only one term and this is the
linear combination of base expressions. Table 3 shows that MBA-Blast has a satisfying and stable
runtime for two and three variables while it can, in the available implementation, not be used for a
higher number of variables.

Expr.
Average runtime of MBA-Solver

2 variables 3 variables 4 variables

e1 0.00074 s 0.00091 s 0.12761 s
e2 0.00052 s 0.00092 s 0.12352 s
e3 0.00026 s 0.00150 s 0.12802 s
e4 0.00041 s 0.00160 s 0.12683 s
e5 0.00072 s 0.00134 s 0.12871 s

Table 4: Runtime of MBA-Solver on 1 000 MBAs generated for five expressions

MBA-Solver simplifies, independently of the number of variables, all expressions for e2 and e5 —
again partially due to our modifications — exactly to those simpler expressions. Unfortunately, due
to their basis choice, the simple expression e(x, y) = x+ y is missed, and ”simplified”, depending on
the number of variables, to one of the following expressions:

1 · ∼(x | ∼y) + 1 (x&∼y) + 2 (x& y)

1 · ∼(x | (∼y | z)) + 1 · ∼(∼x | (y | z)) + 2 · ∼(∼x | (∼y | z))
+ 1 (∼x& (y & z)) + 1 (x& (∼y & z)) + 2 (x& (y & z))

1 · ∼(x | (∼y | (z | t))) + 1 · ∼(∼x | (y | (z | t)))
+ 2 · ∼(∼x | (∼y | (z | t))) + 1 · ∼(x | (∼y | (∼z | t)))
+ 1 · ∼(∼x | (y | (∼z | t))) + 2 · ∼(∼x | (∼y | (∼z | t)))
+ 1 (∼x& (y & (∼z & t))) + 1 (x& (∼y & (∼z & t)))

+ 2 (x& (y & (∼z & t))) + 1 (∼x& (y & (z & t)))

+ 1 (x& (∼y & (z & t))) + 2 (x& (y & (z & t)))

Using Z3, it takes 0.06561 seconds to verify the equivalence to e1(x, y) = x+y for the first result,
1.01100 seconds for the second one and 16.63006 seconds for the third one.
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Figure 1: Comparison of the runtimes of MBA-Blast (×), MBA-Solver (△) and SiMBA (□) on a
logarithmic scale for MBAs for e1

Even more complex results are obtained for e3 and for e4. It is of course not satisfying to get such
complex expressions for very simple ones. However, as already mentioned, if MBA-Solver would try
different bases as well — and especially (x, y, x& y,−1) — it would find a simpler solution. Apart
from that, as can be seen in Table 4, MBA-Solver works particularly fast for three variables and much
slower for four variables. A possible reason is that the tool has to parse a very large lookup table.1

Unfortunately we cannot run the tool for higher numbers of variables since its public implementation
is not generic enough and restricted to up to four variables.2

Expr.
Average runtime of SiMBA

2 variables 3 variables 4 variables

e1 0.00019 s 0.00117 s 0.00550 s
e2 0.00010 s 0.00045 s 0.00528 s
e3 0.00020 s 0.00109 s 0.00544 s
e4 0.00024 s 0.00100 s 0.00564 s
e5 0.00022 s 0.00108 s 0.00543 s

Table 5: Runtime of SiMBA on 1 000 MBAs generated for five expressions

For SiMBA, all simplified expressions were exactly equal to the corresponding simple expressions.
As Table 5 suggests, it has a very competitive runtime and outperforms especially MBA-Blast. The
algorithms’ runtimes for e1 are additionally compared in Figure 1; they would be similar for other
expressions. Unfortunately we are missing a comparison to MBA-Solver for more than four variables
as well as an explanation for MBA-Solver’s bad performance for four variables.

3.3.4 Encoded MBAs

In order to make MBAs in general harder to solve, its inputs and/or its output can be encoded
using specific functions. We provide some experiments on MBAs whose outputs are encoded using
affine functions f : Bn → Bn, f(x) = ax + b where a, b ∈ Bn are randomly determined. Note
that MBA-Blast and MBA-Solver cannot deal with this encoding since everything would have to be
multiplied out in order to have the canonical representation as stated in Definition 2, and that input
encoding would cause e4 and e5 to be nonpolynomial.

In Table 6, we consider runtimes of the simplification of encoded versions of the expressions used
in the previous section, i.e.,

e′1(x, y) = a(x+ y) + b for random a, b ∈ B64

1Further experiments suggest that outsourcing the parsing to a preprocessing step would save about 65 per cent
of the runtime for four variables. Furthermore, omitting the search for a solution using exactly one bitwise expression
would make (nearly) the whole lookup table obsolete and save more than 98 per cent of the runtime in total.

2For five variables, we generated a lookup table only containing the 25 = 32 base expressions, disabled the search
for a solution using exactly one bitwise expression, which would require the whole lookup table, and performed further
adaptions to verify that MBA-Solver has a potential to run fast also for t = 5.
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and equivalently for e′2, . . . , e
′
5.

Expr.
Average runtime of SiMBA

2 variables 3 variables 4 variables

e′1 0.00020 s 0.00118 s 0.00484 s
e′2 0.00010 s 0.00029 s 0.00481 s
e′3 0.00021 s 0.00125 s 0.00460 s
e′4 0.00020 s 0.00098 s 0.00516 s
e′5 0.00015 s 0.00110 s 0.00547 s

Table 6: Runtime of SiMBA on 1 000 MBAs with output encoding generated for five expressions

As expected, the runtimes do not significantly deviate from that for the non-encoded MBAs.
Each encoded MBA has been simplified to the same expression as its simpler equivalent, which is of
course encoded with the very same function.

4 Conclusion

The algorithm described in this paper is designed to simplify linear MBAs, which clearly is a re-
striction. Regarding the success at simplification of linear MBAs and the runtime taken, it is more
than competitive with comparable tools.

MBA-Blast and MBA-Solver are efficient tools which are based on a groundbreaking transforma-
tion between B = {0, 1} and Bn for any n ∈ N that dates back to 2007 [18]. In the publicly available
implementation, MBA-Solver uses a lookup table in all cases and hence cannot be generalized to
arbitrary variable counts.

We see that MBA-Solver’s runtime increases drastically with four variables, but we cannot ob-
serve more of a trend since we cannot run it for higher numbers of variables. It uses an unhandy basis
for bitwise expressions, and although that can, according to the paper [16], be changed, solving the
equation system would cause much more effort then: While MBA-Blast uses NumPy’s linalg.solve
function for solving it, MBA-Solver leverages the fact that all basis elements have exactly one 1 in
their truth vectors and hence the equation system is trivially solved.

We summarize the main characteristics of SiMBA as follows:

1. It does not require any specific structure of input expressions as long as they can be rewritten
as linear MBAs.

2. It checks whether input expressions are indeed linear.

3. It does not require any specific notation of the variables nor any declaration of them, but
parses them automatically.

4. It aims for nicest solutions in all relevant cases for expressions with at most three variables. In
more detail, it does so for expressions whose output depends on not more than three variables,
i.e., after dropping unnecessary variables.

5. It is implemented to work for an arbitrary number of variables.

6. It can deal with arbitrarily high constants which are constantly reduced modulo 2n for the
word length n ∈ N.

7. It does not use any Python package for simplification such as SymPy and no package such as
NumPy for the solution of the linear equation system.

8. As our experiments suggest, it has a very good performance as compared to other existing
tools.

9. It can handle linear MBAs whose outputs are encoded using affine functions.
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10. It can be extended in a straightforward way to the simplification of polynomial and nonpoly-
nomial MBAs.

We particularly want to point out that one main application of MBAs is given by opaque predi-
cates, i.e., predicates which constantly evaluate to either 0 or 1, and SiMBA can easily simplify all
linear MBAs used in opaque predicates to these constants.

As a major contribution, we proved that a linear MBA can be written as a linear combina-
tion of base bitwise expressions via a direct evaluation for tuples of zeros and ones and hence a
transformation from Bn, for n ∈ N, to B = {0, 1} is not necessary — see Theorem 2.

5 Outlook to Nonlinear Mixed Boolean-Arithmetic Expres-
sions

As mentioned previously, MBA-Blast and MBA-Solver are also applicable to polynomial MBAs.
Just like those, SiMBA is extendable to this class of MBAs and to nonpolynomial MBAs as well
after identifying all linear subexpressions of a nonlinear MBA. Unfortunately, it seems that a global
straightforward approach via evaluation of nonlinear MBAs on a small set of input values is not
possible.

Table 7 shows a comparison of an adaption of SiMBA with MBA-Solver for the simplification
of linear, polynomial and nonpolynomial MBAs provided by MBA-Solver’s Github repository [9].
While both tools can, in combination with Z3, verify all MBAs’ equivalence to their corresponding
simpler expressions, SiMBA simplifies all MBAs exactly equivalently as their simpler expressions.
Additionally it simplifies 44 of 104 additional nonlinear MBAs which are marked unsolvable by MBA-
Solver exactly as their simpler expressions, and it outperforms MBA-Solver regarding runtime in all
categories. In contrast to MBA-Solver, SiMBA does not require any information whether an MBA
is polynomial or even linear, and it does not use the additional hints about linear subexpressions
provided for nonpolynomial MBAs.

Category Total
MBA-Solver SiMBA

Solved Runtime Solved Runtime

Linear 1 008 1 008 0.01546 s 1 008 0.00250 s
Polynom. 1 008 1 008 0.02271 s 1 008 0.00326 s
Nonpolyn. 899 109 0.07965 s 899 0.00957 s

Table 7: Comparison of a simple adaption of SiMBA with MBA-Solver on the datasets of linear,
polynomial and nonpolynomial MBAs provided by MBA-Solver’s Github repository [9]

In contrast to the algorithm described in Section 3.2, SiMBA’s adaption parses an input expres-
sion into an acyclic syntax tree (AST), identifies and simplifies linear subexpressions and applies
simple additional tricks.
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