2
|
1 /*
|
|
2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
|
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
|
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
|
5 */
|
|
6
|
|
7 /* $Header: /home/kbs/jutta/src/gsm/gsm-1.0/src/RCS/code.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */
|
|
8
|
|
9 #include "config.h"
|
|
10
|
|
11
|
|
12 #ifdef HAS_STDLIB_H
|
|
13 #include <stdlib.h>
|
|
14 #include <string.h>
|
|
15 #else
|
|
16 # include "proto.h"
|
|
17 extern char *memcpy P((char *, char *, int));
|
|
18 #endif
|
|
19
|
|
20 #include "private.h"
|
|
21 #include "gsm.h"
|
|
22 #include "proto.h"
|
|
23
|
|
24 /*
|
|
25 * 4.2 FIXED POINT IMPLEMENTATION OF THE RPE-LTP CODER
|
|
26 */
|
|
27
|
|
28 void Gsm_Coder P8((S, s, LARc, Nc, bc, Mc, xmaxc, xMc), struct gsm_state *S, word * s, /* [0..159] samples IN */
|
|
29 /*
|
|
30 * The RPE-LTD coder works on a frame by frame basis. The length of
|
|
31 * the frame is equal to 160 samples. Some computations are done
|
|
32 * once per frame to produce at the output of the coder the
|
|
33 * LARc[1..8] parameters which are the coded LAR coefficients and
|
|
34 * also to realize the inverse filtering operation for the entire
|
|
35 * frame (160 samples of signal d[0..159]). These parts produce at
|
|
36 * the output of the coder:
|
|
37 */
|
|
38 word * LARc, /* [0..7] LAR coefficients OUT */
|
|
39 /*
|
|
40 * Procedure 4.2.11 to 4.2.18 are to be executed four times per
|
|
41 * frame. That means once for each sub-segment RPE-LTP analysis of
|
|
42 * 40 samples. These parts produce at the output of the coder:
|
|
43 */
|
|
44 word * Nc, /* [0..3] LTP lag OUT */
|
|
45 word * bc, /* [0..3] coded LTP gain OUT */
|
|
46 word * Mc, /* [0..3] RPE grid selection OUT */
|
|
47 word * xmaxc, /* [0..3] Coded maximum amplitude OUT */
|
|
48 word * xMc /* [13*4] normalized RPE samples OUT */
|
|
49 )
|
|
50 {
|
|
51 int k;
|
|
52 word *dp = S->dp0 + 120; /* [ -120...-1 ] */
|
|
53 word *dpp = dp; /* [ 0...39 ] */
|
|
54
|
|
55 static word e[50] = { 0 };
|
|
56
|
|
57 word so[160];
|
|
58
|
|
59 Gsm_Preprocess(S, s, so);
|
|
60 Gsm_LPC_Analysis(S, so, LARc);
|
|
61 Gsm_Short_Term_Analysis_Filter(S, LARc, so);
|
|
62
|
|
63 for (k = 0; k <= 3; k++, xMc += 13) {
|
|
64
|
|
65 Gsm_Long_Term_Predictor(S, so + k * 40, /* d [0..39] IN */
|
|
66 dp, /* dp [-120..-1] IN */
|
|
67 e + 5, /* e [0..39] OUT */
|
|
68 dpp, /* dpp [0..39] OUT */
|
|
69 Nc++, bc++);
|
|
70
|
|
71 Gsm_RPE_Encoding(S, e + 5, /* e ][0..39][ IN/OUT */
|
|
72 xmaxc++, Mc++, xMc);
|
|
73 /*
|
|
74 * Gsm_Update_of_reconstructed_short_time_residual_signal
|
|
75 * ( dpp, e + 5, dp );
|
|
76 */
|
|
77
|
|
78 {
|
|
79 register int i;
|
|
80 register longword ltmp;
|
|
81 for (i = 0; i <= 39; i++)
|
|
82 dp[i] = GSM_ADD(e[5 + i], dpp[i]);
|
|
83 }
|
|
84 dp += 40;
|
|
85 dpp += 40;
|
|
86
|
|
87 }
|
|
88 (void) memcpy((char *) S->dp0, (char *) (S->dp0 + 160),
|
|
89 120 * sizeof(*S->dp0));
|
|
90 }
|