comparison intercom/aec.h @ 2:13be24d74cd2

import intercom-0.4.1
author Peter Meerwald <pmeerw@cosy.sbg.ac.at>
date Fri, 25 Jun 2010 09:57:52 +0200
parents
children c6c5a16ce2f2
comparison
equal deleted inserted replaced
1:9cadc470e3da 2:13be24d74cd2
1 /* aec.h
2 *
3 * Copyright (C) DFS Deutsche Flugsicherung (2004, 2005).
4 * All Rights Reserved.
5 * Author: Andre Adrian
6 *
7 * Acoustic Echo Cancellation Leaky NLMS-pw algorithm
8 *
9 * Version 0.3 filter created with www.dsptutor.freeuk.com
10 * Version 0.3.1 Allow change of stability parameter delta
11 * Version 0.4 Leaky Normalized LMS - pre whitening algorithm
12 */
13
14 #ifndef _AEC_H /* include only once */
15
16 // use double if your CPU does software-emulation of float
17 typedef float REAL;
18
19 /* dB Values */
20 const REAL M0dB = 1.0f;
21 const REAL M3dB = 0.71f;
22 const REAL M6dB = 0.50f;
23 const REAL M9dB = 0.35f;
24 const REAL M12dB = 0.25f;
25 const REAL M18dB = 0.125f;
26 const REAL M24dB = 0.063f;
27
28 /* dB values for 16bit PCM */
29 /* MxdB_PCM = 32767 * 10 ^(x / 20) */
30 const REAL M10dB_PCM = 10362.0f;
31 const REAL M20dB_PCM = 3277.0f;
32 const REAL M25dB_PCM = 1843.0f;
33 const REAL M30dB_PCM = 1026.0f;
34 const REAL M35dB_PCM = 583.0f;
35 const REAL M40dB_PCM = 328.0f;
36 const REAL M45dB_PCM = 184.0f;
37 const REAL M50dB_PCM = 104.0f;
38 const REAL M55dB_PCM = 58.0f;
39 const REAL M60dB_PCM = 33.0f;
40 const REAL M65dB_PCM = 18.0f;
41 const REAL M70dB_PCM = 10.0f;
42 const REAL M75dB_PCM = 6.0f;
43 const REAL M80dB_PCM = 3.0f;
44 const REAL M85dB_PCM = 2.0f;
45 const REAL M90dB_PCM = 1.0f;
46
47 const REAL MAXPCM = 32767.0f;
48
49 /* Design constants (Change to fine tune the algorithms */
50
51 /* The following values are for hardware AEC and studio quality
52 * microphone */
53
54 /* NLMS filter length in taps (samples). A longer filter length gives
55 * better Echo Cancellation, but maybe slower convergence speed and
56 * needs more CPU power (Order of NLMS is linear) */
57 #define NLMS_LEN (100*WIDEB*8)
58
59 /* Vector w visualization length in taps (samples).
60 * Must match argv value for wdisplay.tcl */
61 #define DUMP_LEN (40*WIDEB*8)
62
63 /* minimum energy in xf. Range: M70dB_PCM to M50dB_PCM. Should be equal
64 * to microphone ambient Noise level */
65 const REAL NoiseFloor = M55dB_PCM;
66
67 /* Leaky hangover in taps.
68 */
69 const int Thold = 60 * WIDEB * 8;
70
71 // Adrian soft decision DTD
72 // left point. X is ratio, Y is stepsize
73 const float STEPX1 = 1.0, STEPY1 = 1.0;
74 // right point. STEPX2=2.0 is good double talk, 3.0 is good single talk.
75 const float STEPX2 = 2.5, STEPY2 = 0;
76 const float ALPHAFAST = 1.0f / 100.0f;
77 const float ALPHASLOW = 1.0f / 20000.0f;
78
79
80
81 /* Ageing multiplier for LMS memory vector w */
82 const REAL Leaky = 0.9999f;
83
84 /* Double Talk Detector Speaker/Microphone Threshold. Range <=1
85 * Large value (M0dB) is good for Single-Talk Echo cancellation,
86 * small value (M12dB) is good for Doulbe-Talk AEC */
87 const REAL GeigelThreshold = M6dB;
88
89 /* for Non Linear Processor. Range >0 to 1. Large value (M0dB) is good
90 * for Double-Talk, small value (M12dB) is good for Single-Talk */
91 const REAL NLPAttenuation = M12dB;
92
93 /* Below this line there are no more design constants */
94
95
96 /* Exponential Smoothing or IIR Infinite Impulse Response Filter */
97 class IIR_HP {
98 REAL x;
99
100 public:
101 IIR_HP() {
102 x = 0.0f;
103 }
104
105 REAL highpass(REAL in) {
106 const REAL a0 = 0.01f; /* controls Transfer Frequency */
107 /* Highpass = Signal - Lowpass. Lowpass = Exponential Smoothing */
108 x += a0 * (in - x);
109 return in - x;
110 };
111 };
112
113 #if WIDEB==1
114 /* 17 taps FIR Finite Impulse Response filter
115 * Coefficients calculated with
116 * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
117 */
118 class FIR_HP_300Hz {
119 REAL z[18];
120
121 public:
122 FIR_HP_300Hz() {
123 memset(this, 0, sizeof(FIR_HP_300Hz));
124 }
125
126 REAL highpass(REAL in) {
127 const REAL a[18] = {
128 // Kaiser Window FIR Filter, Filter type: High pass
129 // Passband: 300.0 - 4000.0 Hz, Order: 16
130 // Transition band: 75.0 Hz, Stopband attenuation: 10.0 dB
131 -0.034870606, -0.039650206, -0.044063766, -0.04800318,
132 -0.051370874, -0.054082647, -0.056070227, -0.057283327,
133 0.8214126, -0.057283327, -0.056070227, -0.054082647,
134 -0.051370874, -0.04800318, -0.044063766, -0.039650206,
135 -0.034870606, 0.0
136 };
137 memmove(z + 1, z, 17 * sizeof(REAL));
138 z[0] = in;
139 REAL sum0 = 0.0, sum1 = 0.0;
140 int j;
141
142 for (j = 0; j < 18; j += 2) {
143 // optimize: partial loop unrolling
144 sum0 += a[j] * z[j];
145 sum1 += a[j + 1] * z[j + 1];
146 }
147 return sum0 + sum1;
148 }
149 };
150
151 #else
152
153 /* 35 taps FIR Finite Impulse Response filter
154 * Passband 150Hz to 4kHz for 8kHz sample rate, 300Hz to 8kHz for 16kHz
155 * sample rate.
156 * Coefficients calculated with
157 * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
158 */
159 class FIR_HP_300Hz {
160 REAL z[36];
161
162 public:
163 FIR_HP_300Hz() {
164 memset(this, 0, sizeof(FIR_HP_300Hz));
165 }
166
167 REAL highpass(REAL in) {
168 const REAL a[36] = {
169 // Kaiser Window FIR Filter, Filter type: High pass
170 // Passband: 150.0 - 4000.0 Hz, Order: 34
171 // Transition band: 34.0 Hz, Stopband attenuation: 10.0 dB
172 -0.016165324, -0.017454365, -0.01871232, -0.019931411,
173 -0.021104068, -0.022222936, -0.02328091, -0.024271343,
174 -0.025187887, -0.02602462, -0.026776174, -0.027437767,
175 -0.028004972, -0.028474221, -0.028842418, -0.029107114,
176 -0.02926664, 0.8524841, -0.02926664, -0.029107114,
177 -0.028842418, -0.028474221, -0.028004972, -0.027437767,
178 -0.026776174, -0.02602462, -0.025187887, -0.024271343,
179 -0.02328091, -0.022222936, -0.021104068, -0.019931411,
180 -0.01871232, -0.017454365, -0.016165324, 0.0
181 };
182 memmove(z + 1, z, 35 * sizeof(REAL));
183 z[0] = in;
184 REAL sum0 = 0.0, sum1 = 0.0;
185 int j;
186
187 for (j = 0; j < 36; j += 2) {
188 // optimize: partial loop unrolling
189 sum0 += a[j] * z[j];
190 sum1 += a[j + 1] * z[j + 1];
191 }
192 return sum0 + sum1;
193 }
194 };
195 #endif
196
197 /* Recursive single pole IIR Infinite Impulse response High-pass filter
198 *
199 * Reference: The Scientist and Engineer's Guide to Digital Processing
200 *
201 * output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
202 *
203 * X = exp(-2.0 * pi * Fc)
204 * A0 = (1 + X) / 2
205 * A1 = -(1 + X) / 2
206 * B1 = X
207 * Fc = cutoff freq / sample rate
208 */
209 class IIR1 {
210 REAL in0, out0;
211 REAL a0, a1, b1;
212
213 public:
214 IIR1() {
215 memset(this, 0, sizeof(IIR1));
216 }
217
218 void init(REAL Fc) {
219 b1 = expf(-2.0f * M_PI * Fc);
220 a0 = (1.0f + b1) / 2.0f;
221 a1 = -a0;
222 in0 = 0.0f;
223 out0 = 0.0f;
224 }
225
226 REAL highpass(REAL in) {
227 REAL out = a0 * in + a1 * in0 + b1 * out0;
228 in0 = in;
229 out0 = out;
230 return out;
231 }
232 };
233
234
235 /* Recursive two pole IIR Infinite Impulse Response filter
236 * Coefficients calculated with
237 * http://www.dsptutor.freeuk.com/IIRFilterDesign/IIRFiltDes102.html
238 */
239 class IIR2 {
240 REAL x[2], y[2];
241
242 public:
243 IIR2() {
244 memset(this, 0, sizeof(IIR2));
245 }
246
247 REAL highpass(REAL in) {
248 // Butterworth IIR filter, Filter type: HP
249 // Passband: 2000 - 4000.0 Hz, Order: 2
250 const REAL a[] = { 0.29289323f, -0.58578646f, 0.29289323f };
251 const REAL b[] = { 1.3007072E-16f, 0.17157288f };
252 REAL out =
253 a[0] * in + a[1] * x[0] + a[2] * x[1] - b[0] * y[0] - b[1] * y[1];
254
255 x[1] = x[0];
256 x[0] = in;
257 y[1] = y[0];
258 y[0] = out;
259 return out;
260 }
261 };
262
263
264 // Extention in taps to reduce mem copies
265 #define NLMS_EXT (10*8)
266
267 // block size in taps to optimize DTD calculation
268 #define DTD_LEN 16
269
270
271 class AEC {
272 // Time domain Filters
273 IIR_HP acMic, acSpk; // DC-level remove Highpass)
274 FIR_HP_300Hz cutoff; // 150Hz cut-off Highpass
275 REAL gain; // Mic signal amplify
276 IIR1 Fx, Fe; // pre-whitening Highpass for x, e
277
278 // Adrian soft decision DTD (Double Talk Detector)
279 REAL dfast, xfast;
280 REAL dslow, xslow;
281
282 // NLMS-pw
283 REAL x[NLMS_LEN + NLMS_EXT]; // tap delayed loudspeaker signal
284 REAL xf[NLMS_LEN + NLMS_EXT]; // pre-whitening tap delayed signal
285 REAL w[NLMS_LEN]; // tap weights
286 int j; // optimize: less memory copies
287 double dotp_xf_xf; // double to avoid loss of precision
288 float delta; // noise floor to stabilize NLMS
289
290 // AES
291 float aes_y2; // not in use!
292
293 // w vector visualization
294 REAL ws[DUMP_LEN]; // tap weights sums
295 int fdwdisplay; // TCP file descriptor
296 int dumpcnt; // wdisplay output counter
297
298 /* Double-Talk Detector
299 *
300 * in d: microphone sample (PCM as REALing point value)
301 * in x: loudspeaker sample (PCM as REALing point value)
302 * return: from 0 for doubletalk to 1.0 for single talk
303 */
304 float dtd(REAL d, REAL x);
305
306 void AEC::leaky();
307
308 /* Normalized Least Mean Square Algorithm pre-whitening (NLMS-pw)
309 * The LMS algorithm was developed by Bernard Widrow
310 * book: Haykin, Adaptive Filter Theory, 4. edition, Prentice Hall, 2002
311 *
312 * in d: microphone sample (16bit PCM value)
313 * in x_: loudspeaker sample (16bit PCM value)
314 * in stepsize: NLMS adaptation variable
315 * return: echo cancelled microphone sample
316 */
317 REAL nlms_pw(REAL d, REAL x_, float stepsize);
318
319 public:
320 // variables are public for visualization
321 int hangover;
322 float stepsize;
323 AEC();
324
325 /* Acoustic Echo Cancellation and Suppression of one sample
326 * in d: microphone signal with echo
327 * in x: loudspeaker signal
328 * return: echo cancelled microphone signal
329 */
330 int AEC::doAEC(int d_, int x_);
331
332 float AEC::getambient() {
333 return dfast;
334 };
335 void AEC::setambient(float Min_xf) {
336 dotp_xf_xf -= delta; // subtract old delta
337 delta = (NLMS_LEN-1) * Min_xf * Min_xf;
338 dotp_xf_xf += delta; // add new delta
339 };
340 void AEC::setgain(float gain_) {
341 gain = gain_;
342 };
343 void AEC::openwdisplay();
344 void AEC::setaes(float aes_y2_) {
345 aes_y2 = aes_y2_;
346 };
347 double AEC::max_dotp_xf_xf(double u);
348 };
349
350 #define _AEC_H
351 #endif

Repositories maintained by Peter Meerwald, pmeerw@pmeerw.net.