Mercurial > hg > audiostuff
comparison intercom/gsm/add.c @ 2:13be24d74cd2
import intercom-0.4.1
| author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
|---|---|
| date | Fri, 25 Jun 2010 09:57:52 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:9cadc470e3da | 2:13be24d74cd2 |
|---|---|
| 1 /* | |
| 2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische | |
| 3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for | |
| 4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. | |
| 5 */ | |
| 6 | |
| 7 /* $Header: /home/kbs/jutta/src/gsm/gsm-1.0/src/RCS/add.c,v 1.2 1993/01/29 18:23:15 jutta Exp $ */ | |
| 8 | |
| 9 /* | |
| 10 * See private.h for the more commonly used macro versions. | |
| 11 */ | |
| 12 | |
| 13 #include <stdio.h> | |
| 14 #include <assert.h> | |
| 15 | |
| 16 #include "private.h" | |
| 17 #include "gsm.h" | |
| 18 #include "proto.h" | |
| 19 | |
| 20 #define saturate(x) \ | |
| 21 ((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x)) | |
| 22 | |
| 23 word gsm_add P2((a, b), word a, word b) | |
| 24 { | |
| 25 longword sum = (longword) a + (longword) b; | |
| 26 return saturate(sum); | |
| 27 } | |
| 28 | |
| 29 word gsm_sub P2((a, b), word a, word b) | |
| 30 { | |
| 31 longword diff = (longword) a - (longword) b; | |
| 32 return saturate(diff); | |
| 33 } | |
| 34 | |
| 35 word gsm_mult P2((a, b), word a, word b) | |
| 36 { | |
| 37 if (a == MIN_WORD && b == MIN_WORD) | |
| 38 return MAX_WORD; | |
| 39 else | |
| 40 return (word) (SASR((longword) a * (longword) b, 15)); | |
| 41 } | |
| 42 | |
| 43 word gsm_mult_r P2((a, b), word a, word b) | |
| 44 { | |
| 45 if (b == MIN_WORD && a == MIN_WORD) | |
| 46 return MAX_WORD; | |
| 47 else { | |
| 48 longword prod = (longword) a * (longword) b + 16384; | |
| 49 prod >>= 15; | |
| 50 return prod & 0xFFFF; | |
| 51 } | |
| 52 } | |
| 53 | |
| 54 word gsm_abs P1((a), word a) | |
| 55 { | |
| 56 return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a; | |
| 57 } | |
| 58 | |
| 59 longword gsm_L_mult P2((a, b), word a, word b) | |
| 60 { | |
| 61 assert(a != MIN_WORD || b != MIN_WORD); | |
| 62 return ((longword) a * (longword) b) << 1; | |
| 63 } | |
| 64 | |
| 65 longword gsm_L_add P2((a, b), longword a, longword b) | |
| 66 { | |
| 67 if (a < 0) { | |
| 68 if (b >= 0) | |
| 69 return a + b; | |
| 70 else { | |
| 71 ulongword A = (ulongword) - (a + 1) + (ulongword) - (b + 1); | |
| 72 return A >= | |
| 73 (ulongword) MAX_LONGWORD ? MIN_LONGWORD : -(longword) A - 2; | |
| 74 } | |
| 75 } else if (b <= 0) | |
| 76 return a + b; | |
| 77 else { | |
| 78 ulongword A = (ulongword) a + (ulongword) b; | |
| 79 return A > (ulongword) MAX_LONGWORD ? MAX_LONGWORD : A; | |
| 80 } | |
| 81 } | |
| 82 | |
| 83 longword gsm_L_sub P2((a, b), longword a, longword b) | |
| 84 { | |
| 85 if (a >= 0) { | |
| 86 if (b >= 0) | |
| 87 return a - b; | |
| 88 else { | |
| 89 /* a>=0, b<0 */ | |
| 90 | |
| 91 ulongword A = (ulongword) a + -(b + 1); | |
| 92 return A >= (ulongword) MAX_LONGWORD ? MAX_LONGWORD : (A + 1); | |
| 93 } | |
| 94 } else if (b <= 0) | |
| 95 return a - b; | |
| 96 else { | |
| 97 /* a<0, b>0 */ | |
| 98 | |
| 99 ulongword A = (ulongword) - (a + 1) + b; | |
| 100 return A >= (ulongword) MAX_LONGWORD ? MIN_LONGWORD : -A - 1; | |
| 101 } | |
| 102 } | |
| 103 | |
| 104 static unsigned char bitoff[256] = { | |
| 105 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, | |
| 106 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | |
| 107 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 108 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 109 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 110 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 111 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 112 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 113 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 114 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 115 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 116 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 117 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 118 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 119 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 120 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | |
| 121 }; | |
| 122 | |
| 123 word gsm_norm P1((a), longword a) | |
| 124 /* | |
| 125 * the number of left shifts needed to normalize the 32 bit | |
| 126 * variable L_var1 for positive values on the interval | |
| 127 * | |
| 128 * with minimum of | |
| 129 * minimum of 1073741824 (01000000000000000000000000000000) and | |
| 130 * maximum of 2147483647 (01111111111111111111111111111111) | |
| 131 * | |
| 132 * | |
| 133 * and for negative values on the interval with | |
| 134 * minimum of -2147483648 (-10000000000000000000000000000000) and | |
| 135 * maximum of -1073741824 ( -1000000000000000000000000000000). | |
| 136 * | |
| 137 * in order to normalize the result, the following | |
| 138 * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 ); | |
| 139 * | |
| 140 * (That's 'ffs', only from the left, not the right..) | |
| 141 */ | |
| 142 { | |
| 143 assert(a != 0); | |
| 144 | |
| 145 if (a < 0) { | |
| 146 if (a <= (longword) - 1073741824) | |
| 147 return 0; | |
| 148 a = ~a; | |
| 149 } | |
| 150 | |
| 151 return a & 0xffff0000 | |
| 152 ? (a & 0xff000000 ? -1 + bitoff[(unsigned char) (0xFF & (a >> 24))] | |
| 153 : 7 + bitoff[(unsigned char) (0xFF & (a >> 16))]) | |
| 154 : (a & 0xff00 ? 15 + bitoff[(unsigned char) (0xFF & (a >> 8))] | |
| 155 : 23 + bitoff[(unsigned char) (0xFF & a)]); | |
| 156 } | |
| 157 | |
| 158 longword gsm_L_asl P2((a, n), longword a, int n) | |
| 159 { | |
| 160 if (n >= 32) | |
| 161 return 0; | |
| 162 if (n <= -32) | |
| 163 return -(a < 0); | |
| 164 if (n < 0) | |
| 165 return gsm_asr(a, -n); | |
| 166 return a << n; | |
| 167 } | |
| 168 | |
| 169 word gsm_asl P2((a, n), word a, int n) | |
| 170 { | |
| 171 if (n >= 16) | |
| 172 return 0; | |
| 173 if (n <= -16) | |
| 174 return -(a < 0); | |
| 175 if (n < 0) | |
| 176 return gsm_asr(a, -n); | |
| 177 return a << n; | |
| 178 } | |
| 179 | |
| 180 longword gsm_L_asr P2((a, n), longword a, int n) | |
| 181 { | |
| 182 if (n >= 32) | |
| 183 return -(a < 0); | |
| 184 if (n <= -32) | |
| 185 return 0; | |
| 186 if (n < 0) | |
| 187 return a << -n; | |
| 188 | |
| 189 # ifdef SASR | |
| 190 return a >> n; | |
| 191 # else | |
| 192 if (a >= 0) | |
| 193 return a >> n; | |
| 194 else | |
| 195 return -(longword) (-(ulongword) a >> n); | |
| 196 # endif | |
| 197 } | |
| 198 | |
| 199 word gsm_asr P2((a, n), word a, int n) | |
| 200 { | |
| 201 if (n >= 16) | |
| 202 return -(a < 0); | |
| 203 if (n <= -16) | |
| 204 return 0; | |
| 205 if (n < 0) | |
| 206 return a << -n; | |
| 207 | |
| 208 # ifdef SASR | |
| 209 return a >> n; | |
| 210 # else | |
| 211 if (a >= 0) | |
| 212 return a >> n; | |
| 213 else | |
| 214 return -(word) (-(uword) a >> n); | |
| 215 # endif | |
| 216 } | |
| 217 | |
| 218 /* | |
| 219 * (From p. 46, end of section 4.2.5) | |
| 220 * | |
| 221 * NOTE: The following lines gives [sic] one correct implementation | |
| 222 * of the div(num, denum) arithmetic operation. Compute div | |
| 223 * which is the integer division of num by denum: with denum | |
| 224 * >= num > 0 | |
| 225 */ | |
| 226 | |
| 227 word gsm_div P2((num, denum), word num, word denum) | |
| 228 { | |
| 229 longword L_num = num; | |
| 230 longword L_denum = denum; | |
| 231 word div = 0; | |
| 232 int k = 15; | |
| 233 | |
| 234 /* The parameter num sometimes becomes zero. | |
| 235 * Although this is explicitly guarded against in 4.2.5, | |
| 236 * we assume that the result should then be zero as well. | |
| 237 */ | |
| 238 | |
| 239 /* assert(num != 0); */ | |
| 240 | |
| 241 assert(num >= 0 && denum >= num); | |
| 242 if (num == 0) | |
| 243 return 0; | |
| 244 | |
| 245 while (k--) { | |
| 246 div <<= 1; | |
| 247 L_num <<= 1; | |
| 248 | |
| 249 if (L_num >= L_denum) { | |
| 250 L_num -= L_denum; | |
| 251 div++; | |
| 252 } | |
| 253 } | |
| 254 | |
| 255 return div; | |
| 256 } |
