Mercurial > hg > audiostuff
comparison spandsp-0.0.6pre17/src/fsk.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
| author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
|---|---|
| date | Fri, 25 Jun 2010 15:50:58 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 3:c6c5a16ce2f2 | 4:26cd8f1ef0b1 |
|---|---|
| 1 /* | |
| 2 * SpanDSP - a series of DSP components for telephony | |
| 3 * | |
| 4 * fsk.c - FSK modem transmit and receive parts | |
| 5 * | |
| 6 * Written by Steve Underwood <steveu@coppice.org> | |
| 7 * | |
| 8 * Copyright (C) 2003 Steve Underwood | |
| 9 * | |
| 10 * All rights reserved. | |
| 11 * | |
| 12 * This program is free software; you can redistribute it and/or modify | |
| 13 * it under the terms of the GNU Lesser General Public License version 2.1, | |
| 14 * as published by the Free Software Foundation. | |
| 15 * | |
| 16 * This program is distributed in the hope that it will be useful, | |
| 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 19 * GNU Lesser General Public License for more details. | |
| 20 * | |
| 21 * You should have received a copy of the GNU Lesser General Public | |
| 22 * License along with this program; if not, write to the Free Software | |
| 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
| 24 * | |
| 25 * $Id: fsk.c,v 1.60 2009/11/02 13:25:20 steveu Exp $ | |
| 26 */ | |
| 27 | |
| 28 /*! \file */ | |
| 29 | |
| 30 #if defined(HAVE_CONFIG_H) | |
| 31 #include "config.h" | |
| 32 #endif | |
| 33 | |
| 34 #include <stdlib.h> | |
| 35 #include <inttypes.h> | |
| 36 #include <string.h> | |
| 37 #if defined(HAVE_TGMATH_H) | |
| 38 #include <tgmath.h> | |
| 39 #endif | |
| 40 #if defined(HAVE_MATH_H) | |
| 41 #include <math.h> | |
| 42 #endif | |
| 43 #include "floating_fudge.h" | |
| 44 #include <assert.h> | |
| 45 | |
| 46 #include "spandsp/telephony.h" | |
| 47 #include "spandsp/complex.h" | |
| 48 #include "spandsp/dds.h" | |
| 49 #include "spandsp/power_meter.h" | |
| 50 #include "spandsp/async.h" | |
| 51 #include "spandsp/fsk.h" | |
| 52 | |
| 53 #include "spandsp/private/fsk.h" | |
| 54 | |
| 55 const fsk_spec_t preset_fsk_specs[] = | |
| 56 { | |
| 57 { | |
| 58 "V21 ch 1", | |
| 59 1080 + 100, | |
| 60 1080 - 100, | |
| 61 -14, | |
| 62 -30, | |
| 63 300*100 | |
| 64 }, | |
| 65 { | |
| 66 "V21 ch 2", | |
| 67 1750 + 100, | |
| 68 1750 - 100, | |
| 69 -14, | |
| 70 -30, | |
| 71 300*100 | |
| 72 }, | |
| 73 { | |
| 74 "V23 ch 1", | |
| 75 2100, | |
| 76 1300, | |
| 77 -14, | |
| 78 -30, | |
| 79 1200*100 | |
| 80 }, | |
| 81 { | |
| 82 "V23 ch 2", | |
| 83 450, | |
| 84 390, | |
| 85 -14, | |
| 86 -30, | |
| 87 75*100 | |
| 88 }, | |
| 89 { | |
| 90 "Bell103 ch 1", | |
| 91 2125 - 100, | |
| 92 2125 + 100, | |
| 93 -14, | |
| 94 -30, | |
| 95 300*100 | |
| 96 }, | |
| 97 { | |
| 98 "Bell103 ch 2", | |
| 99 1170 - 100, | |
| 100 1170 + 100, | |
| 101 -14, | |
| 102 -30, | |
| 103 300*100 | |
| 104 }, | |
| 105 { | |
| 106 "Bell202", | |
| 107 2200, | |
| 108 1200, | |
| 109 -14, | |
| 110 -30, | |
| 111 1200*100 | |
| 112 }, | |
| 113 { | |
| 114 "Weitbrecht 45.45", /* Used for TDD (Telecoms Device for the Deaf) */ | |
| 115 1800, | |
| 116 1400, | |
| 117 -14, | |
| 118 -30, | |
| 119 4545 | |
| 120 }, | |
| 121 { | |
| 122 "Weitbrecht 50", /* Used for TDD (Telecoms Device for the Deaf) */ | |
| 123 1800, | |
| 124 1400, | |
| 125 -14, | |
| 126 -30, | |
| 127 5000 | |
| 128 } | |
| 129 }; | |
| 130 | |
| 131 SPAN_DECLARE(int) fsk_tx_restart(fsk_tx_state_t *s, const fsk_spec_t *spec) | |
| 132 { | |
| 133 s->baud_rate = spec->baud_rate; | |
| 134 s->phase_rates[0] = dds_phase_rate((float) spec->freq_zero); | |
| 135 s->phase_rates[1] = dds_phase_rate((float) spec->freq_one); | |
| 136 s->scaling = dds_scaling_dbm0((float) spec->tx_level); | |
| 137 /* Initialise fractional sample baud generation. */ | |
| 138 s->phase_acc = 0; | |
| 139 s->baud_frac = 0; | |
| 140 s->current_phase_rate = s->phase_rates[1]; | |
| 141 | |
| 142 s->shutdown = FALSE; | |
| 143 return 0; | |
| 144 } | |
| 145 /*- End of function --------------------------------------------------------*/ | |
| 146 | |
| 147 SPAN_DECLARE(fsk_tx_state_t *) fsk_tx_init(fsk_tx_state_t *s, | |
| 148 const fsk_spec_t *spec, | |
| 149 get_bit_func_t get_bit, | |
| 150 void *user_data) | |
| 151 { | |
| 152 if (s == NULL) | |
| 153 { | |
| 154 if ((s = (fsk_tx_state_t *) malloc(sizeof(*s))) == NULL) | |
| 155 return NULL; | |
| 156 } | |
| 157 memset(s, 0, sizeof(*s)); | |
| 158 | |
| 159 s->get_bit = get_bit; | |
| 160 s->get_bit_user_data = user_data; | |
| 161 fsk_tx_restart(s, spec); | |
| 162 return s; | |
| 163 } | |
| 164 /*- End of function --------------------------------------------------------*/ | |
| 165 | |
| 166 SPAN_DECLARE(int) fsk_tx_release(fsk_tx_state_t *s) | |
| 167 { | |
| 168 return 0; | |
| 169 } | |
| 170 /*- End of function --------------------------------------------------------*/ | |
| 171 | |
| 172 SPAN_DECLARE(int) fsk_tx_free(fsk_tx_state_t *s) | |
| 173 { | |
| 174 free(s); | |
| 175 return 0; | |
| 176 } | |
| 177 /*- End of function --------------------------------------------------------*/ | |
| 178 | |
| 179 SPAN_DECLARE_NONSTD(int) fsk_tx(fsk_tx_state_t *s, int16_t amp[], int len) | |
| 180 { | |
| 181 int sample; | |
| 182 int bit; | |
| 183 | |
| 184 if (s->shutdown) | |
| 185 return 0; | |
| 186 /* Make the transitions between 0 and 1 phase coherent, but instantaneous | |
| 187 jumps. There is currently no interpolation for bauds that end mid-sample. | |
| 188 Mainstream users will not care. Some specialist users might have a problem | |
| 189 with them, if they care about accurate transition timing. */ | |
| 190 for (sample = 0; sample < len; sample++) | |
| 191 { | |
| 192 if ((s->baud_frac += s->baud_rate) >= SAMPLE_RATE*100) | |
| 193 { | |
| 194 s->baud_frac -= SAMPLE_RATE*100; | |
| 195 if ((bit = s->get_bit(s->get_bit_user_data)) == SIG_STATUS_END_OF_DATA) | |
| 196 { | |
| 197 if (s->status_handler) | |
| 198 s->status_handler(s->status_user_data, SIG_STATUS_END_OF_DATA); | |
| 199 if (s->status_handler) | |
| 200 s->status_handler(s->status_user_data, SIG_STATUS_SHUTDOWN_COMPLETE); | |
| 201 s->shutdown = TRUE; | |
| 202 break; | |
| 203 } | |
| 204 s->current_phase_rate = s->phase_rates[bit & 1]; | |
| 205 } | |
| 206 amp[sample] = dds_mod(&(s->phase_acc), s->current_phase_rate, s->scaling, 0); | |
| 207 } | |
| 208 return sample; | |
| 209 } | |
| 210 /*- End of function --------------------------------------------------------*/ | |
| 211 | |
| 212 SPAN_DECLARE(void) fsk_tx_power(fsk_tx_state_t *s, float power) | |
| 213 { | |
| 214 s->scaling = dds_scaling_dbm0(power); | |
| 215 } | |
| 216 /*- End of function --------------------------------------------------------*/ | |
| 217 | |
| 218 SPAN_DECLARE(void) fsk_tx_set_get_bit(fsk_tx_state_t *s, get_bit_func_t get_bit, void *user_data) | |
| 219 { | |
| 220 s->get_bit = get_bit; | |
| 221 s->get_bit_user_data = user_data; | |
| 222 } | |
| 223 /*- End of function --------------------------------------------------------*/ | |
| 224 | |
| 225 SPAN_DECLARE(void) fsk_tx_set_modem_status_handler(fsk_tx_state_t *s, modem_tx_status_func_t handler, void *user_data) | |
| 226 { | |
| 227 s->status_handler = handler; | |
| 228 s->status_user_data = user_data; | |
| 229 } | |
| 230 /*- End of function --------------------------------------------------------*/ | |
| 231 | |
| 232 SPAN_DECLARE(void) fsk_rx_signal_cutoff(fsk_rx_state_t *s, float cutoff) | |
| 233 { | |
| 234 /* The 6.04 allows for the gain of the DC blocker */ | |
| 235 s->carrier_on_power = (int32_t) (power_meter_level_dbm0(cutoff + 2.5f - 6.04f)); | |
| 236 s->carrier_off_power = (int32_t) (power_meter_level_dbm0(cutoff - 2.5f - 6.04f)); | |
| 237 } | |
| 238 /*- End of function --------------------------------------------------------*/ | |
| 239 | |
| 240 SPAN_DECLARE(float) fsk_rx_signal_power(fsk_rx_state_t *s) | |
| 241 { | |
| 242 return power_meter_current_dbm0(&s->power); | |
| 243 } | |
| 244 /*- End of function --------------------------------------------------------*/ | |
| 245 | |
| 246 SPAN_DECLARE(void) fsk_rx_set_put_bit(fsk_rx_state_t *s, put_bit_func_t put_bit, void *user_data) | |
| 247 { | |
| 248 s->put_bit = put_bit; | |
| 249 s->put_bit_user_data = user_data; | |
| 250 } | |
| 251 /*- End of function --------------------------------------------------------*/ | |
| 252 | |
| 253 SPAN_DECLARE(void) fsk_rx_set_modem_status_handler(fsk_rx_state_t *s, modem_tx_status_func_t handler, void *user_data) | |
| 254 { | |
| 255 s->status_handler = handler; | |
| 256 s->status_user_data = user_data; | |
| 257 } | |
| 258 /*- End of function --------------------------------------------------------*/ | |
| 259 | |
| 260 SPAN_DECLARE(int) fsk_rx_restart(fsk_rx_state_t *s, const fsk_spec_t *spec, int framing_mode) | |
| 261 { | |
| 262 int chop; | |
| 263 | |
| 264 s->baud_rate = spec->baud_rate; | |
| 265 s->framing_mode = framing_mode; | |
| 266 fsk_rx_signal_cutoff(s, (float) spec->min_level); | |
| 267 | |
| 268 /* Detect by correlating against the tones we want, over a period | |
| 269 of one baud. The correlation must be quadrature. */ | |
| 270 | |
| 271 /* First we need the quadrature tone generators to correlate | |
| 272 against. */ | |
| 273 s->phase_rate[0] = dds_phase_rate((float) spec->freq_zero); | |
| 274 s->phase_rate[1] = dds_phase_rate((float) spec->freq_one); | |
| 275 s->phase_acc[0] = 0; | |
| 276 s->phase_acc[1] = 0; | |
| 277 s->last_sample = 0; | |
| 278 | |
| 279 /* The correlation should be over one baud. */ | |
| 280 s->correlation_span = SAMPLE_RATE*100/spec->baud_rate; | |
| 281 /* But limit it for very slow baud rates, so we do not overflow our | |
| 282 buffer. */ | |
| 283 if (s->correlation_span > FSK_MAX_WINDOW_LEN) | |
| 284 s->correlation_span = FSK_MAX_WINDOW_LEN; | |
| 285 | |
| 286 /* We need to scale, to avoid overflow in the correlation. */ | |
| 287 s->scaling_shift = 0; | |
| 288 chop = s->correlation_span; | |
| 289 while (chop != 0) | |
| 290 { | |
| 291 s->scaling_shift++; | |
| 292 chop >>= 1; | |
| 293 } | |
| 294 | |
| 295 /* Initialise the baud/bit rate tracking. */ | |
| 296 s->baud_phase = 0; | |
| 297 s->frame_state = 0; | |
| 298 s->frame_bits = 0; | |
| 299 s->last_bit = 0; | |
| 300 | |
| 301 /* Initialise a power detector, so sense when a signal is present. */ | |
| 302 power_meter_init(&(s->power), 4); | |
| 303 s->signal_present = 0; | |
| 304 return 0; | |
| 305 } | |
| 306 /*- End of function --------------------------------------------------------*/ | |
| 307 | |
| 308 SPAN_DECLARE(fsk_rx_state_t *) fsk_rx_init(fsk_rx_state_t *s, | |
| 309 const fsk_spec_t *spec, | |
| 310 int framing_mode, | |
| 311 put_bit_func_t put_bit, | |
| 312 void *user_data) | |
| 313 { | |
| 314 if (s == NULL) | |
| 315 { | |
| 316 if ((s = (fsk_rx_state_t *) malloc(sizeof(*s))) == NULL) | |
| 317 return NULL; | |
| 318 } | |
| 319 memset(s, 0, sizeof(*s)); | |
| 320 | |
| 321 s->put_bit = put_bit; | |
| 322 s->put_bit_user_data = user_data; | |
| 323 fsk_rx_restart(s, spec, framing_mode); | |
| 324 return s; | |
| 325 } | |
| 326 /*- End of function --------------------------------------------------------*/ | |
| 327 | |
| 328 SPAN_DECLARE(int) fsk_rx_release(fsk_rx_state_t *s) | |
| 329 { | |
| 330 return 0; | |
| 331 } | |
| 332 /*- End of function --------------------------------------------------------*/ | |
| 333 | |
| 334 SPAN_DECLARE(int) fsk_rx_free(fsk_rx_state_t *s) | |
| 335 { | |
| 336 free(s); | |
| 337 return 0; | |
| 338 } | |
| 339 /*- End of function --------------------------------------------------------*/ | |
| 340 | |
| 341 static void report_status_change(fsk_rx_state_t *s, int status) | |
| 342 { | |
| 343 if (s->status_handler) | |
| 344 s->status_handler(s->status_user_data, status); | |
| 345 else if (s->put_bit) | |
| 346 s->put_bit(s->put_bit_user_data, status); | |
| 347 } | |
| 348 /*- End of function --------------------------------------------------------*/ | |
| 349 | |
| 350 SPAN_DECLARE_NONSTD(int) fsk_rx(fsk_rx_state_t *s, const int16_t *amp, int len) | |
| 351 { | |
| 352 int buf_ptr; | |
| 353 int baudstate; | |
| 354 int i; | |
| 355 int j; | |
| 356 int16_t x; | |
| 357 int32_t dot; | |
| 358 int32_t sum[2]; | |
| 359 int32_t power; | |
| 360 complexi_t ph; | |
| 361 | |
| 362 buf_ptr = s->buf_ptr; | |
| 363 | |
| 364 for (i = 0; i < len; i++) | |
| 365 { | |
| 366 /* The *totally* asynchronous character to character behaviour of these | |
| 367 modems, when carrying async. data, seems to force a sample by sample | |
| 368 approach. */ | |
| 369 for (j = 0; j < 2; j++) | |
| 370 { | |
| 371 s->dot[j].re -= s->window[j][buf_ptr].re; | |
| 372 s->dot[j].im -= s->window[j][buf_ptr].im; | |
| 373 | |
| 374 ph = dds_complexi(&(s->phase_acc[j]), s->phase_rate[j]); | |
| 375 s->window[j][buf_ptr].re = (ph.re*amp[i]) >> s->scaling_shift; | |
| 376 s->window[j][buf_ptr].im = (ph.im*amp[i]) >> s->scaling_shift; | |
| 377 | |
| 378 s->dot[j].re += s->window[j][buf_ptr].re; | |
| 379 s->dot[j].im += s->window[j][buf_ptr].im; | |
| 380 | |
| 381 dot = s->dot[j].re >> 15; | |
| 382 sum[j] = dot*dot; | |
| 383 dot = s->dot[j].im >> 15; | |
| 384 sum[j] += dot*dot; | |
| 385 } | |
| 386 /* If there isn't much signal, don't demodulate - it will only produce | |
| 387 useless junk results. */ | |
| 388 /* There should be no DC in the signal, but sometimes there is. | |
| 389 We need to measure the power with the DC blocked, but not using | |
| 390 a slow to respond DC blocker. Use the most elementary HPF. */ | |
| 391 x = amp[i] >> 1; | |
| 392 power = power_meter_update(&(s->power), x - s->last_sample); | |
| 393 s->last_sample = x; | |
| 394 if (s->signal_present) | |
| 395 { | |
| 396 /* Look for power below turn-off threshold to turn the carrier off */ | |
| 397 if (power < s->carrier_off_power) | |
| 398 { | |
| 399 if (--s->signal_present <= 0) | |
| 400 { | |
| 401 /* Count down a short delay, to ensure we push the last | |
| 402 few bits through the filters before stopping. */ | |
| 403 report_status_change(s, SIG_STATUS_CARRIER_DOWN); | |
| 404 s->baud_phase = 0; | |
| 405 continue; | |
| 406 } | |
| 407 } | |
| 408 } | |
| 409 else | |
| 410 { | |
| 411 /* Look for power exceeding turn-on threshold to turn the carrier on */ | |
| 412 if (power < s->carrier_on_power) | |
| 413 { | |
| 414 s->baud_phase = 0; | |
| 415 continue; | |
| 416 } | |
| 417 if (s->baud_phase < (s->correlation_span >> 1) - 30) | |
| 418 { | |
| 419 s->baud_phase++; | |
| 420 continue; | |
| 421 } | |
| 422 s->signal_present = 1; | |
| 423 /* Initialise the baud/bit rate tracking. */ | |
| 424 s->baud_phase = 0; | |
| 425 s->frame_state = 0; | |
| 426 s->frame_bits = 0; | |
| 427 s->last_bit = 0; | |
| 428 report_status_change(s, SIG_STATUS_CARRIER_UP); | |
| 429 } | |
| 430 /* Non-coherent FSK demodulation by correlation with the target tones | |
| 431 over a one baud interval. The slow V.xx specs. are too open ended | |
| 432 to allow anything fancier to be used. The dot products are calculated | |
| 433 using a sliding window approach, so the compute load is not that great. */ | |
| 434 | |
| 435 baudstate = (sum[0] < sum[1]); | |
| 436 switch (s->framing_mode) | |
| 437 { | |
| 438 case FSK_FRAME_MODE_SYNC: | |
| 439 /* Synchronous serial operation - e.g. for HDLC */ | |
| 440 if (s->last_bit != baudstate) | |
| 441 { | |
| 442 /* On a transition we check our timing */ | |
| 443 s->last_bit = baudstate; | |
| 444 /* For synchronous use (e.g. HDLC channels in FAX modems), nudge | |
| 445 the baud phase gently, trying to keep it centred on the bauds. */ | |
| 446 if (s->baud_phase < (SAMPLE_RATE*50)) | |
| 447 s->baud_phase += (s->baud_rate >> 3); | |
| 448 else | |
| 449 s->baud_phase -= (s->baud_rate >> 3); | |
| 450 } | |
| 451 if ((s->baud_phase += s->baud_rate) >= (SAMPLE_RATE*100)) | |
| 452 { | |
| 453 /* We should be in the middle of a baud now, so report the current | |
| 454 state as the next bit */ | |
| 455 s->baud_phase -= (SAMPLE_RATE*100); | |
| 456 s->put_bit(s->put_bit_user_data, baudstate); | |
| 457 } | |
| 458 break; | |
| 459 case FSK_FRAME_MODE_ASYNC: | |
| 460 /* Fully asynchronous mode */ | |
| 461 if (s->last_bit != baudstate) | |
| 462 { | |
| 463 /* On a transition we check our timing */ | |
| 464 s->last_bit = baudstate; | |
| 465 /* For async. operation, believe transitions completely, and | |
| 466 sample appropriately. This allows instant start on the first | |
| 467 transition. */ | |
| 468 /* We must now be about half way to a sampling point. We do not do | |
| 469 any fractional sample estimation of the transitions, so this is | |
| 470 the most accurate baud alignment we can do. */ | |
| 471 s->baud_phase = SAMPLE_RATE*50; | |
| 472 } | |
| 473 if ((s->baud_phase += s->baud_rate) >= (SAMPLE_RATE*100)) | |
| 474 { | |
| 475 /* We should be in the middle of a baud now, so report the current | |
| 476 state as the next bit */ | |
| 477 s->baud_phase -= (SAMPLE_RATE*100); | |
| 478 s->put_bit(s->put_bit_user_data, baudstate); | |
| 479 } | |
| 480 break; | |
| 481 default: | |
| 482 /* Gather the specified number of bits, with robust checking to ensure reasonable voice immunity. | |
| 483 The first bit should be a start bit (0), and the last bit should be a stop bit (1) */ | |
| 484 if (s->frame_state == 0) | |
| 485 { | |
| 486 /* Looking for the start of a zero bit, which hopefully the start of a start bit */ | |
| 487 if (baudstate == 0) | |
| 488 { | |
| 489 s->baud_phase = SAMPLE_RATE*(100 - 40)/2; | |
| 490 s->frame_state = -1; | |
| 491 s->frame_bits = 0; | |
| 492 s->last_bit = -1; | |
| 493 } | |
| 494 } | |
| 495 else if (s->frame_state == -1) | |
| 496 { | |
| 497 /* Look for a continuous zero from the start of the start bit until | |
| 498 beyond the middle */ | |
| 499 if (baudstate != 0) | |
| 500 { | |
| 501 /* If we aren't looking at a stable start bit, restart */ | |
| 502 s->frame_state = 0; | |
| 503 } | |
| 504 else | |
| 505 { | |
| 506 s->baud_phase += s->baud_rate; | |
| 507 if (s->baud_phase >= SAMPLE_RATE*100) | |
| 508 { | |
| 509 s->frame_state = 1; | |
| 510 s->last_bit = baudstate; | |
| 511 } | |
| 512 } | |
| 513 } | |
| 514 else | |
| 515 { | |
| 516 s->baud_phase += s->baud_rate; | |
| 517 if (s->baud_phase >= SAMPLE_RATE*(100 - 40)) | |
| 518 { | |
| 519 if (s->last_bit < 0) | |
| 520 s->last_bit = baudstate; | |
| 521 /* Look for the bit being consistent over the central 20% of the bit time. */ | |
| 522 if (s->last_bit != baudstate) | |
| 523 { | |
| 524 s->frame_state = 0; | |
| 525 } | |
| 526 else if (s->baud_phase >= SAMPLE_RATE*100) | |
| 527 { | |
| 528 /* We should be in the middle of a baud now, so report the current | |
| 529 state as the next bit */ | |
| 530 if (s->last_bit == baudstate) | |
| 531 { | |
| 532 s->frame_bits |= (baudstate << s->framing_mode); | |
| 533 s->frame_bits >>= 1; | |
| 534 s->baud_phase -= (SAMPLE_RATE*100); | |
| 535 if (++s->frame_state > s->framing_mode) | |
| 536 { | |
| 537 /* Check we have a stop bit */ | |
| 538 if (baudstate == 1) | |
| 539 { | |
| 540 /* Check we have a start bit */ | |
| 541 if ((s->frame_bits & 1) == 0) | |
| 542 { | |
| 543 /* Drop the start bit, and pass the rest back */ | |
| 544 s->frame_bits >>= 1; | |
| 545 s->put_bit(s->put_bit_user_data, s->frame_bits); | |
| 546 } | |
| 547 } | |
| 548 s->frame_state = 0; | |
| 549 } | |
| 550 } | |
| 551 else | |
| 552 { | |
| 553 s->frame_state = 0; | |
| 554 } | |
| 555 s->last_bit = -1; | |
| 556 } | |
| 557 } | |
| 558 } | |
| 559 break; | |
| 560 } | |
| 561 if (++buf_ptr >= s->correlation_span) | |
| 562 buf_ptr = 0; | |
| 563 } | |
| 564 s->buf_ptr = buf_ptr; | |
| 565 return 0; | |
| 566 } | |
| 567 /*- End of function --------------------------------------------------------*/ | |
| 568 | |
| 569 SPAN_DECLARE(int) fsk_rx_fillin(fsk_rx_state_t *s, int len) | |
| 570 { | |
| 571 /* The valid choice here is probably to do nothing. We don't change state | |
| 572 (i.e carrier on<->carrier off), and we'll just output less bits than we | |
| 573 should. */ | |
| 574 /* TODO: Advance the symbol phase the appropriate amount */ | |
| 575 return 0; | |
| 576 } | |
| 577 /*- End of function --------------------------------------------------------*/ | |
| 578 /*- End of file ------------------------------------------------------------*/ |
