Mercurial > hg > audiostuff
comparison spandsp-0.0.6pre17/src/g726.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:c6c5a16ce2f2 | 4:26cd8f1ef0b1 |
---|---|
1 /* | |
2 * SpanDSP - a series of DSP components for telephony | |
3 * | |
4 * g726.c - The ITU G.726 codec. | |
5 * | |
6 * Written by Steve Underwood <steveu@coppice.org> | |
7 * | |
8 * Copyright (C) 2006 Steve Underwood | |
9 * | |
10 * All rights reserved. | |
11 * | |
12 * This program is free software; you can redistribute it and/or modify | |
13 * it under the terms of the GNU Lesser General Public License version 2.1, | |
14 * as published by the Free Software Foundation. | |
15 * | |
16 * This program is distributed in the hope that it will be useful, | |
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 * GNU Lesser General Public License for more details. | |
20 * | |
21 * You should have received a copy of the GNU Lesser General Public | |
22 * License along with this program; if not, write to the Free Software | |
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
24 * | |
25 * Based on G.721/G.723 code which is: | |
26 * | |
27 * This source code is a product of Sun Microsystems, Inc. and is provided | |
28 * for unrestricted use. Users may copy or modify this source code without | |
29 * charge. | |
30 * | |
31 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING | |
32 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR | |
33 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. | |
34 * | |
35 * Sun source code is provided with no support and without any obligation on | |
36 * the part of Sun Microsystems, Inc. to assist in its use, correction, | |
37 * modification or enhancement. | |
38 * | |
39 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE | |
40 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE | |
41 * OR ANY PART THEREOF. | |
42 * | |
43 * In no event will Sun Microsystems, Inc. be liable for any lost revenue | |
44 * or profits or other special, indirect and consequential damages, even if | |
45 * Sun has been advised of the possibility of such damages. | |
46 * | |
47 * Sun Microsystems, Inc. | |
48 * 2550 Garcia Avenue | |
49 * Mountain View, California 94043 | |
50 * | |
51 * $Id: g726.c,v 1.28.4.1 2009/12/28 12:20:46 steveu Exp $ | |
52 */ | |
53 | |
54 /*! \file */ | |
55 | |
56 #if defined(HAVE_CONFIG_H) | |
57 #include "config.h" | |
58 #endif | |
59 | |
60 #include <inttypes.h> | |
61 #include <memory.h> | |
62 #include <stdlib.h> | |
63 #if defined(HAVE_TGMATH_H) | |
64 #include <tgmath.h> | |
65 #endif | |
66 #if defined(HAVE_MATH_H) | |
67 #include <math.h> | |
68 #endif | |
69 #include "floating_fudge.h" | |
70 | |
71 #include "spandsp/telephony.h" | |
72 #include "spandsp/dc_restore.h" | |
73 #include "spandsp/bitstream.h" | |
74 #include "spandsp/bit_operations.h" | |
75 #include "spandsp/g711.h" | |
76 #include "spandsp/g726.h" | |
77 | |
78 #include "spandsp/private/bitstream.h" | |
79 #include "spandsp/private/g726.h" | |
80 | |
81 /* | |
82 * Maps G.726_16 code word to reconstructed scale factor normalized log | |
83 * magnitude values. | |
84 */ | |
85 static const int g726_16_dqlntab[4] = | |
86 { | |
87 116, 365, 365, 116 | |
88 }; | |
89 | |
90 /* Maps G.726_16 code word to log of scale factor multiplier. */ | |
91 static const int g726_16_witab[4] = | |
92 { | |
93 -704, 14048, 14048, -704 | |
94 }; | |
95 | |
96 /* | |
97 * Maps G.726_16 code words to a set of values whose long and short | |
98 * term averages are computed and then compared to give an indication | |
99 * how stationary (steady state) the signal is. | |
100 */ | |
101 static const int g726_16_fitab[4] = | |
102 { | |
103 0x000, 0xE00, 0xE00, 0x000 | |
104 }; | |
105 | |
106 static const int qtab_726_16[1] = | |
107 { | |
108 261 | |
109 }; | |
110 | |
111 /* | |
112 * Maps G.726_24 code word to reconstructed scale factor normalized log | |
113 * magnitude values. | |
114 */ | |
115 static const int g726_24_dqlntab[8] = | |
116 { | |
117 -2048, 135, 273, 373, 373, 273, 135, -2048 | |
118 }; | |
119 | |
120 /* Maps G.726_24 code word to log of scale factor multiplier. */ | |
121 static const int g726_24_witab[8] = | |
122 { | |
123 -128, 960, 4384, 18624, 18624, 4384, 960, -128 | |
124 }; | |
125 | |
126 /* | |
127 * Maps G.726_24 code words to a set of values whose long and short | |
128 * term averages are computed and then compared to give an indication | |
129 * how stationary (steady state) the signal is. | |
130 */ | |
131 static const int g726_24_fitab[8] = | |
132 { | |
133 0x000, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0x000 | |
134 }; | |
135 | |
136 static const int qtab_726_24[3] = | |
137 { | |
138 8, 218, 331 | |
139 }; | |
140 | |
141 /* | |
142 * Maps G.726_32 code word to reconstructed scale factor normalized log | |
143 * magnitude values. | |
144 */ | |
145 static const int g726_32_dqlntab[16] = | |
146 { | |
147 -2048, 4, 135, 213, 273, 323, 373, 425, | |
148 425, 373, 323, 273, 213, 135, 4, -2048 | |
149 }; | |
150 | |
151 /* Maps G.726_32 code word to log of scale factor multiplier. */ | |
152 static const int g726_32_witab[16] = | |
153 { | |
154 -384, 576, 1312, 2048, 3584, 6336, 11360, 35904, | |
155 35904, 11360, 6336, 3584, 2048, 1312, 576, -384 | |
156 }; | |
157 | |
158 /* | |
159 * Maps G.726_32 code words to a set of values whose long and short | |
160 * term averages are computed and then compared to give an indication | |
161 * how stationary (steady state) the signal is. | |
162 */ | |
163 static const int g726_32_fitab[16] = | |
164 { | |
165 0x000, 0x000, 0x000, 0x200, 0x200, 0x200, 0x600, 0xE00, | |
166 0xE00, 0x600, 0x200, 0x200, 0x200, 0x000, 0x000, 0x000 | |
167 }; | |
168 | |
169 static const int qtab_726_32[7] = | |
170 { | |
171 -124, 80, 178, 246, 300, 349, 400 | |
172 }; | |
173 | |
174 /* | |
175 * Maps G.726_40 code word to ructeconstructed scale factor normalized log | |
176 * magnitude values. | |
177 */ | |
178 static const int g726_40_dqlntab[32] = | |
179 { | |
180 -2048, -66, 28, 104, 169, 224, 274, 318, | |
181 358, 395, 429, 459, 488, 514, 539, 566, | |
182 566, 539, 514, 488, 459, 429, 395, 358, | |
183 318, 274, 224, 169, 104, 28, -66, -2048 | |
184 }; | |
185 | |
186 /* Maps G.726_40 code word to log of scale factor multiplier. */ | |
187 static const int g726_40_witab[32] = | |
188 { | |
189 448, 448, 768, 1248, 1280, 1312, 1856, 3200, | |
190 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, | |
191 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, | |
192 3200, 1856, 1312, 1280, 1248, 768, 448, 448 | |
193 }; | |
194 | |
195 /* | |
196 * Maps G.726_40 code words to a set of values whose long and short | |
197 * term averages are computed and then compared to give an indication | |
198 * how stationary (steady state) the signal is. | |
199 */ | |
200 static const int g726_40_fitab[32] = | |
201 { | |
202 0x000, 0x000, 0x000, 0x000, 0x000, 0x200, 0x200, 0x200, | |
203 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, | |
204 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, | |
205 0x200, 0x200, 0x200, 0x000, 0x000, 0x000, 0x000, 0x000 | |
206 }; | |
207 | |
208 static const int qtab_726_40[15] = | |
209 { | |
210 -122, -16, 68, 139, 198, 250, 298, 339, | |
211 378, 413, 445, 475, 502, 528, 553 | |
212 }; | |
213 | |
214 /* | |
215 * returns the integer product of the 14-bit integer "an" and | |
216 * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn". | |
217 */ | |
218 static int16_t fmult(int16_t an, int16_t srn) | |
219 { | |
220 int16_t anmag; | |
221 int16_t anexp; | |
222 int16_t anmant; | |
223 int16_t wanexp; | |
224 int16_t wanmant; | |
225 int16_t retval; | |
226 | |
227 anmag = (an > 0) ? an : ((-an) & 0x1FFF); | |
228 anexp = (int16_t) (top_bit(anmag) - 5); | |
229 anmant = (anmag == 0) ? 32 : (anexp >= 0) ? (anmag >> anexp) : (anmag << -anexp); | |
230 wanexp = anexp + ((srn >> 6) & 0xF) - 13; | |
231 | |
232 wanmant = (anmant*(srn & 0x3F) + 0x30) >> 4; | |
233 retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : (wanmant >> -wanexp); | |
234 | |
235 return (((an ^ srn) < 0) ? -retval : retval); | |
236 } | |
237 /*- End of function --------------------------------------------------------*/ | |
238 | |
239 /* | |
240 * Compute the estimated signal from the 6-zero predictor. | |
241 */ | |
242 static __inline__ int16_t predictor_zero(g726_state_t *s) | |
243 { | |
244 int i; | |
245 int sezi; | |
246 | |
247 sezi = fmult(s->b[0] >> 2, s->dq[0]); | |
248 /* ACCUM */ | |
249 for (i = 1; i < 6; i++) | |
250 sezi += fmult(s->b[i] >> 2, s->dq[i]); | |
251 return (int16_t) sezi; | |
252 } | |
253 /*- End of function --------------------------------------------------------*/ | |
254 | |
255 /* | |
256 * Computes the estimated signal from the 2-pole predictor. | |
257 */ | |
258 static __inline__ int16_t predictor_pole(g726_state_t *s) | |
259 { | |
260 return (fmult(s->a[1] >> 2, s->sr[1]) + fmult(s->a[0] >> 2, s->sr[0])); | |
261 } | |
262 /*- End of function --------------------------------------------------------*/ | |
263 | |
264 /* | |
265 * Computes the quantization step size of the adaptive quantizer. | |
266 */ | |
267 static int step_size(g726_state_t *s) | |
268 { | |
269 int y; | |
270 int dif; | |
271 int al; | |
272 | |
273 if (s->ap >= 256) | |
274 return s->yu; | |
275 y = s->yl >> 6; | |
276 dif = s->yu - y; | |
277 al = s->ap >> 2; | |
278 if (dif > 0) | |
279 y += (dif*al) >> 6; | |
280 else if (dif < 0) | |
281 y += (dif*al + 0x3F) >> 6; | |
282 return y; | |
283 } | |
284 /*- End of function --------------------------------------------------------*/ | |
285 | |
286 /* | |
287 * Given a raw sample, 'd', of the difference signal and a | |
288 * quantization step size scale factor, 'y', this routine returns the | |
289 * ADPCM codeword to which that sample gets quantized. The step | |
290 * size scale factor division operation is done in the log base 2 domain | |
291 * as a subtraction. | |
292 */ | |
293 static int16_t quantize(int d, /* Raw difference signal sample */ | |
294 int y, /* Step size multiplier */ | |
295 const int table[], /* quantization table */ | |
296 int quantizer_states) /* table size of int16_t integers */ | |
297 { | |
298 int16_t dqm; /* Magnitude of 'd' */ | |
299 int16_t exp; /* Integer part of base 2 log of 'd' */ | |
300 int16_t mant; /* Fractional part of base 2 log */ | |
301 int16_t dl; /* Log of magnitude of 'd' */ | |
302 int16_t dln; /* Step size scale factor normalized log */ | |
303 int i; | |
304 int size; | |
305 | |
306 /* | |
307 * LOG | |
308 * | |
309 * Compute base 2 log of 'd', and store in 'dl'. | |
310 */ | |
311 dqm = (int16_t) abs(d); | |
312 exp = (int16_t) (top_bit(dqm >> 1) + 1); | |
313 /* Fractional portion. */ | |
314 mant = ((dqm << 7) >> exp) & 0x7F; | |
315 dl = (exp << 7) + mant; | |
316 | |
317 /* | |
318 * SUBTB | |
319 * | |
320 * "Divide" by step size multiplier. | |
321 */ | |
322 dln = dl - (int16_t) (y >> 2); | |
323 | |
324 /* | |
325 * QUAN | |
326 * | |
327 * Search for codword i for 'dln'. | |
328 */ | |
329 size = (quantizer_states - 1) >> 1; | |
330 for (i = 0; i < size; i++) | |
331 { | |
332 if (dln < table[i]) | |
333 break; | |
334 } | |
335 if (d < 0) | |
336 { | |
337 /* Take 1's complement of i */ | |
338 return (int16_t) ((size << 1) + 1 - i); | |
339 } | |
340 if (i == 0 && (quantizer_states & 1)) | |
341 { | |
342 /* Zero is only valid if there are an even number of states, so | |
343 take the 1's complement if the code is zero. */ | |
344 return (int16_t) quantizer_states; | |
345 } | |
346 return (int16_t) i; | |
347 } | |
348 /*- End of function --------------------------------------------------------*/ | |
349 | |
350 /* | |
351 * Returns reconstructed difference signal 'dq' obtained from | |
352 * codeword 'i' and quantization step size scale factor 'y'. | |
353 * Multiplication is performed in log base 2 domain as addition. | |
354 */ | |
355 static int16_t reconstruct(int sign, /* 0 for non-negative value */ | |
356 int dqln, /* G.72x codeword */ | |
357 int y) /* Step size multiplier */ | |
358 { | |
359 int16_t dql; /* Log of 'dq' magnitude */ | |
360 int16_t dex; /* Integer part of log */ | |
361 int16_t dqt; | |
362 int16_t dq; /* Reconstructed difference signal sample */ | |
363 | |
364 dql = (int16_t) (dqln + (y >> 2)); /* ADDA */ | |
365 | |
366 if (dql < 0) | |
367 return ((sign) ? -0x8000 : 0); | |
368 /* ANTILOG */ | |
369 dex = (dql >> 7) & 15; | |
370 dqt = 128 + (dql & 127); | |
371 dq = (dqt << 7) >> (14 - dex); | |
372 return ((sign) ? (dq - 0x8000) : dq); | |
373 } | |
374 /*- End of function --------------------------------------------------------*/ | |
375 | |
376 /* | |
377 * updates the state variables for each output code | |
378 */ | |
379 static void update(g726_state_t *s, | |
380 int y, /* quantizer step size */ | |
381 int wi, /* scale factor multiplier */ | |
382 int fi, /* for long/short term energies */ | |
383 int dq, /* quantized prediction difference */ | |
384 int sr, /* reconstructed signal */ | |
385 int dqsez) /* difference from 2-pole predictor */ | |
386 { | |
387 int16_t mag; | |
388 int16_t exp; | |
389 int16_t a2p; /* LIMC */ | |
390 int16_t a1ul; /* UPA1 */ | |
391 int16_t pks1; /* UPA2 */ | |
392 int16_t fa1; | |
393 int16_t ylint; | |
394 int16_t dqthr; | |
395 int16_t ylfrac; | |
396 int16_t thr; | |
397 int16_t pk0; | |
398 int i; | |
399 int tr; | |
400 | |
401 a2p = 0; | |
402 /* Needed in updating predictor poles */ | |
403 pk0 = (dqsez < 0) ? 1 : 0; | |
404 | |
405 /* prediction difference magnitude */ | |
406 mag = (int16_t) (dq & 0x7FFF); | |
407 /* TRANS */ | |
408 ylint = (int16_t) (s->yl >> 15); /* exponent part of yl */ | |
409 ylfrac = (int16_t) ((s->yl >> 10) & 0x1F); /* fractional part of yl */ | |
410 /* Limit threshold to 31 << 10 */ | |
411 thr = (ylint > 9) ? (31 << 10) : ((32 + ylfrac) << ylint); | |
412 dqthr = (thr + (thr >> 1)) >> 1; /* dqthr = 0.75 * thr */ | |
413 if (!s->td) /* signal supposed voice */ | |
414 tr = FALSE; | |
415 else if (mag <= dqthr) /* supposed data, but small mag */ | |
416 tr = FALSE; /* treated as voice */ | |
417 else /* signal is data (modem) */ | |
418 tr = TRUE; | |
419 | |
420 /* | |
421 * Quantizer scale factor adaptation. | |
422 */ | |
423 | |
424 /* FUNCTW & FILTD & DELAY */ | |
425 /* update non-steady state step size multiplier */ | |
426 s->yu = (int16_t) (y + ((wi - y) >> 5)); | |
427 | |
428 /* LIMB */ | |
429 if (s->yu < 544) | |
430 s->yu = 544; | |
431 else if (s->yu > 5120) | |
432 s->yu = 5120; | |
433 | |
434 /* FILTE & DELAY */ | |
435 /* update steady state step size multiplier */ | |
436 s->yl += s->yu + ((-s->yl) >> 6); | |
437 | |
438 /* | |
439 * Adaptive predictor coefficients. | |
440 */ | |
441 if (tr) | |
442 { | |
443 /* Reset the a's and b's for a modem signal */ | |
444 s->a[0] = 0; | |
445 s->a[1] = 0; | |
446 s->b[0] = 0; | |
447 s->b[1] = 0; | |
448 s->b[2] = 0; | |
449 s->b[3] = 0; | |
450 s->b[4] = 0; | |
451 s->b[5] = 0; | |
452 } | |
453 else | |
454 { | |
455 /* Update the a's and b's */ | |
456 /* UPA2 */ | |
457 pks1 = pk0 ^ s->pk[0]; | |
458 | |
459 /* Update predictor pole a[1] */ | |
460 a2p = s->a[1] - (s->a[1] >> 7); | |
461 if (dqsez != 0) | |
462 { | |
463 fa1 = (pks1) ? s->a[0] : -s->a[0]; | |
464 /* a2p = function of fa1 */ | |
465 if (fa1 < -8191) | |
466 a2p -= 0x100; | |
467 else if (fa1 > 8191) | |
468 a2p += 0xFF; | |
469 else | |
470 a2p += fa1 >> 5; | |
471 | |
472 if (pk0 ^ s->pk[1]) | |
473 { | |
474 /* LIMC */ | |
475 if (a2p <= -12160) | |
476 a2p = -12288; | |
477 else if (a2p >= 12416) | |
478 a2p = 12288; | |
479 else | |
480 a2p -= 0x80; | |
481 } | |
482 else if (a2p <= -12416) | |
483 a2p = -12288; | |
484 else if (a2p >= 12160) | |
485 a2p = 12288; | |
486 else | |
487 a2p += 0x80; | |
488 } | |
489 | |
490 /* TRIGB & DELAY */ | |
491 s->a[1] = a2p; | |
492 | |
493 /* UPA1 */ | |
494 /* Update predictor pole a[0] */ | |
495 s->a[0] -= s->a[0] >> 8; | |
496 if (dqsez != 0) | |
497 { | |
498 if (pks1 == 0) | |
499 s->a[0] += 192; | |
500 else | |
501 s->a[0] -= 192; | |
502 } | |
503 /* LIMD */ | |
504 a1ul = 15360 - a2p; | |
505 if (s->a[0] < -a1ul) | |
506 s->a[0] = -a1ul; | |
507 else if (s->a[0] > a1ul) | |
508 s->a[0] = a1ul; | |
509 | |
510 /* UPB : update predictor zeros b[6] */ | |
511 for (i = 0; i < 6; i++) | |
512 { | |
513 /* Distinguish 40Kbps mode from the others */ | |
514 s->b[i] -= s->b[i] >> ((s->bits_per_sample == 5) ? 9 : 8); | |
515 if (dq & 0x7FFF) | |
516 { | |
517 /* XOR */ | |
518 if ((dq ^ s->dq[i]) >= 0) | |
519 s->b[i] += 128; | |
520 else | |
521 s->b[i] -= 128; | |
522 } | |
523 } | |
524 } | |
525 | |
526 for (i = 5; i > 0; i--) | |
527 s->dq[i] = s->dq[i - 1]; | |
528 /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */ | |
529 if (mag == 0) | |
530 { | |
531 s->dq[0] = (dq >= 0) ? 0x20 : 0xFC20; | |
532 } | |
533 else | |
534 { | |
535 exp = (int16_t) (top_bit(mag) + 1); | |
536 s->dq[0] = (dq >= 0) | |
537 ? ((exp << 6) + ((mag << 6) >> exp)) | |
538 : ((exp << 6) + ((mag << 6) >> exp) - 0x400); | |
539 } | |
540 | |
541 s->sr[1] = s->sr[0]; | |
542 /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */ | |
543 if (sr == 0) | |
544 { | |
545 s->sr[0] = 0x20; | |
546 } | |
547 else if (sr > 0) | |
548 { | |
549 exp = (int16_t) (top_bit(sr) + 1); | |
550 s->sr[0] = (int16_t) ((exp << 6) + ((sr << 6) >> exp)); | |
551 } | |
552 else if (sr > -32768) | |
553 { | |
554 mag = (int16_t) -sr; | |
555 exp = (int16_t) (top_bit(mag) + 1); | |
556 s->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400; | |
557 } | |
558 else | |
559 { | |
560 s->sr[0] = (uint16_t) 0xFC20; | |
561 } | |
562 | |
563 /* DELAY A */ | |
564 s->pk[1] = s->pk[0]; | |
565 s->pk[0] = pk0; | |
566 | |
567 /* TONE */ | |
568 if (tr) /* this sample has been treated as data */ | |
569 s->td = FALSE; /* next one will be treated as voice */ | |
570 else if (a2p < -11776) /* small sample-to-sample correlation */ | |
571 s->td = TRUE; /* signal may be data */ | |
572 else /* signal is voice */ | |
573 s->td = FALSE; | |
574 | |
575 /* Adaptation speed control. */ | |
576 /* FILTA */ | |
577 s->dms += ((int16_t) fi - s->dms) >> 5; | |
578 /* FILTB */ | |
579 s->dml += (((int16_t) (fi << 2) - s->dml) >> 7); | |
580 | |
581 if (tr) | |
582 s->ap = 256; | |
583 else if (y < 1536) /* SUBTC */ | |
584 s->ap += (0x200 - s->ap) >> 4; | |
585 else if (s->td) | |
586 s->ap += (0x200 - s->ap) >> 4; | |
587 else if (abs((s->dms << 2) - s->dml) >= (s->dml >> 3)) | |
588 s->ap += (0x200 - s->ap) >> 4; | |
589 else | |
590 s->ap += (-s->ap) >> 4; | |
591 } | |
592 /*- End of function --------------------------------------------------------*/ | |
593 | |
594 static int16_t tandem_adjust_alaw(int16_t sr, /* decoder output linear PCM sample */ | |
595 int se, /* predictor estimate sample */ | |
596 int y, /* quantizer step size */ | |
597 int i, /* decoder input code */ | |
598 int sign, | |
599 const int qtab[], | |
600 int quantizer_states) | |
601 { | |
602 uint8_t sp; /* A-law compressed 8-bit code */ | |
603 int16_t dx; /* prediction error */ | |
604 int id; /* quantized prediction error */ | |
605 int sd; /* adjusted A-law decoded sample value */ | |
606 | |
607 if (sr <= -32768) | |
608 sr = -1; | |
609 sp = linear_to_alaw((sr >> 1) << 3); | |
610 /* 16-bit prediction error */ | |
611 dx = (int16_t) ((alaw_to_linear(sp) >> 2) - se); | |
612 id = quantize(dx, y, qtab, quantizer_states); | |
613 if (id == i) | |
614 { | |
615 /* No adjustment of sp required */ | |
616 return (int16_t) sp; | |
617 } | |
618 /* sp adjustment needed */ | |
619 /* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */ | |
620 /* 2's complement to biased unsigned */ | |
621 if ((id ^ sign) > (i ^ sign)) | |
622 { | |
623 /* sp adjusted to next lower value */ | |
624 if (sp & 0x80) | |
625 sd = (sp == 0xD5) ? 0x55 : (((sp ^ 0x55) - 1) ^ 0x55); | |
626 else | |
627 sd = (sp == 0x2A) ? 0x2A : (((sp ^ 0x55) + 1) ^ 0x55); | |
628 } | |
629 else | |
630 { | |
631 /* sp adjusted to next higher value */ | |
632 if (sp & 0x80) | |
633 sd = (sp == 0xAA) ? 0xAA : (((sp ^ 0x55) + 1) ^ 0x55); | |
634 else | |
635 sd = (sp == 0x55) ? 0xD5 : (((sp ^ 0x55) - 1) ^ 0x55); | |
636 } | |
637 return (int16_t) sd; | |
638 } | |
639 /*- End of function --------------------------------------------------------*/ | |
640 | |
641 static int16_t tandem_adjust_ulaw(int16_t sr, /* decoder output linear PCM sample */ | |
642 int se, /* predictor estimate sample */ | |
643 int y, /* quantizer step size */ | |
644 int i, /* decoder input code */ | |
645 int sign, | |
646 const int qtab[], | |
647 int quantizer_states) | |
648 { | |
649 uint8_t sp; /* u-law compressed 8-bit code */ | |
650 int16_t dx; /* prediction error */ | |
651 int id; /* quantized prediction error */ | |
652 int sd; /* adjusted u-law decoded sample value */ | |
653 | |
654 if (sr <= -32768) | |
655 sr = 0; | |
656 sp = linear_to_ulaw(sr << 2); | |
657 /* 16-bit prediction error */ | |
658 dx = (int16_t) ((ulaw_to_linear(sp) >> 2) - se); | |
659 id = quantize(dx, y, qtab, quantizer_states); | |
660 if (id == i) | |
661 { | |
662 /* No adjustment of sp required. */ | |
663 return (int16_t) sp; | |
664 } | |
665 /* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */ | |
666 /* 2's complement to biased unsigned */ | |
667 if ((id ^ sign) > (i ^ sign)) | |
668 { | |
669 /* sp adjusted to next lower value */ | |
670 if (sp & 0x80) | |
671 sd = (sp == 0xFF) ? 0x7E : (sp + 1); | |
672 else | |
673 sd = (sp == 0x00) ? 0x00 : (sp - 1); | |
674 } | |
675 else | |
676 { | |
677 /* sp adjusted to next higher value */ | |
678 if (sp & 0x80) | |
679 sd = (sp == 0x80) ? 0x80 : (sp - 1); | |
680 else | |
681 sd = (sp == 0x7F) ? 0xFE : (sp + 1); | |
682 } | |
683 return (int16_t) sd; | |
684 } | |
685 /*- End of function --------------------------------------------------------*/ | |
686 | |
687 /* | |
688 * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code. | |
689 */ | |
690 static uint8_t g726_16_encoder(g726_state_t *s, int16_t amp) | |
691 { | |
692 int y; | |
693 int16_t sei; | |
694 int16_t sezi; | |
695 int16_t se; | |
696 int16_t d; | |
697 int16_t sr; | |
698 int16_t dqsez; | |
699 int16_t dq; | |
700 int16_t i; | |
701 | |
702 sezi = predictor_zero(s); | |
703 sei = sezi + predictor_pole(s); | |
704 se = sei >> 1; | |
705 d = amp - se; | |
706 | |
707 /* Quantize prediction difference */ | |
708 y = step_size(s); | |
709 i = quantize(d, y, qtab_726_16, 4); | |
710 dq = reconstruct(i & 2, g726_16_dqlntab[i], y); | |
711 | |
712 /* Reconstruct the signal */ | |
713 sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); | |
714 | |
715 /* Pole prediction difference */ | |
716 dqsez = sr + (sezi >> 1) - se; | |
717 | |
718 update(s, y, g726_16_witab[i], g726_16_fitab[i], dq, sr, dqsez); | |
719 return (uint8_t) i; | |
720 } | |
721 /*- End of function --------------------------------------------------------*/ | |
722 | |
723 /* | |
724 * Decodes a 2-bit CCITT G.726_16 ADPCM code and returns | |
725 * the resulting 16-bit linear PCM, A-law or u-law sample value. | |
726 */ | |
727 static int16_t g726_16_decoder(g726_state_t *s, uint8_t code) | |
728 { | |
729 int16_t sezi; | |
730 int16_t sei; | |
731 int16_t se; | |
732 int16_t sr; | |
733 int16_t dq; | |
734 int16_t dqsez; | |
735 int y; | |
736 | |
737 /* Mask to get proper bits */ | |
738 code &= 0x03; | |
739 sezi = predictor_zero(s); | |
740 sei = sezi + predictor_pole(s); | |
741 | |
742 y = step_size(s); | |
743 dq = reconstruct(code & 2, g726_16_dqlntab[code], y); | |
744 | |
745 /* Reconstruct the signal */ | |
746 se = sei >> 1; | |
747 sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); | |
748 | |
749 /* Pole prediction difference */ | |
750 dqsez = sr + (sezi >> 1) - se; | |
751 | |
752 update(s, y, g726_16_witab[code], g726_16_fitab[code], dq, sr, dqsez); | |
753 | |
754 switch (s->ext_coding) | |
755 { | |
756 case G726_ENCODING_ALAW: | |
757 return tandem_adjust_alaw(sr, se, y, code, 2, qtab_726_16, 4); | |
758 case G726_ENCODING_ULAW: | |
759 return tandem_adjust_ulaw(sr, se, y, code, 2, qtab_726_16, 4); | |
760 } | |
761 return (sr << 2); | |
762 } | |
763 /*- End of function --------------------------------------------------------*/ | |
764 | |
765 /* | |
766 * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code. | |
767 */ | |
768 static uint8_t g726_24_encoder(g726_state_t *s, int16_t amp) | |
769 { | |
770 int16_t sei; | |
771 int16_t sezi; | |
772 int16_t se; | |
773 int16_t d; | |
774 int16_t sr; | |
775 int16_t dqsez; | |
776 int16_t dq; | |
777 int16_t i; | |
778 int y; | |
779 | |
780 sezi = predictor_zero(s); | |
781 sei = sezi + predictor_pole(s); | |
782 se = sei >> 1; | |
783 d = amp - se; | |
784 | |
785 /* Quantize prediction difference */ | |
786 y = step_size(s); | |
787 i = quantize(d, y, qtab_726_24, 7); | |
788 dq = reconstruct(i & 4, g726_24_dqlntab[i], y); | |
789 | |
790 /* Reconstruct the signal */ | |
791 sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); | |
792 | |
793 /* Pole prediction difference */ | |
794 dqsez = sr + (sezi >> 1) - se; | |
795 | |
796 update(s, y, g726_24_witab[i], g726_24_fitab[i], dq, sr, dqsez); | |
797 return (uint8_t) i; | |
798 } | |
799 /*- End of function --------------------------------------------------------*/ | |
800 | |
801 /* | |
802 * Decodes a 3-bit CCITT G.726_24 ADPCM code and returns | |
803 * the resulting 16-bit linear PCM, A-law or u-law sample value. | |
804 */ | |
805 static int16_t g726_24_decoder(g726_state_t *s, uint8_t code) | |
806 { | |
807 int16_t sezi; | |
808 int16_t sei; | |
809 int16_t se; | |
810 int16_t sr; | |
811 int16_t dq; | |
812 int16_t dqsez; | |
813 int y; | |
814 | |
815 /* Mask to get proper bits */ | |
816 code &= 0x07; | |
817 sezi = predictor_zero(s); | |
818 sei = sezi + predictor_pole(s); | |
819 | |
820 y = step_size(s); | |
821 dq = reconstruct(code & 4, g726_24_dqlntab[code], y); | |
822 | |
823 /* Reconstruct the signal */ | |
824 se = sei >> 1; | |
825 sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); | |
826 | |
827 /* Pole prediction difference */ | |
828 dqsez = sr + (sezi >> 1) - se; | |
829 | |
830 update(s, y, g726_24_witab[code], g726_24_fitab[code], dq, sr, dqsez); | |
831 | |
832 switch (s->ext_coding) | |
833 { | |
834 case G726_ENCODING_ALAW: | |
835 return tandem_adjust_alaw(sr, se, y, code, 4, qtab_726_24, 7); | |
836 case G726_ENCODING_ULAW: | |
837 return tandem_adjust_ulaw(sr, se, y, code, 4, qtab_726_24, 7); | |
838 } | |
839 return (sr << 2); | |
840 } | |
841 /*- End of function --------------------------------------------------------*/ | |
842 | |
843 /* | |
844 * Encodes a linear input sample and returns its 4-bit code. | |
845 */ | |
846 static uint8_t g726_32_encoder(g726_state_t *s, int16_t amp) | |
847 { | |
848 int16_t sei; | |
849 int16_t sezi; | |
850 int16_t se; | |
851 int16_t d; | |
852 int16_t sr; | |
853 int16_t dqsez; | |
854 int16_t dq; | |
855 int16_t i; | |
856 int y; | |
857 | |
858 sezi = predictor_zero(s); | |
859 sei = sezi + predictor_pole(s); | |
860 se = sei >> 1; | |
861 d = amp - se; | |
862 | |
863 /* Quantize the prediction difference */ | |
864 y = step_size(s); | |
865 i = quantize(d, y, qtab_726_32, 15); | |
866 dq = reconstruct(i & 8, g726_32_dqlntab[i], y); | |
867 | |
868 /* Reconstruct the signal */ | |
869 sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); | |
870 | |
871 /* Pole prediction difference */ | |
872 dqsez = sr + (sezi >> 1) - se; | |
873 | |
874 update(s, y, g726_32_witab[i], g726_32_fitab[i], dq, sr, dqsez); | |
875 return (uint8_t) i; | |
876 } | |
877 /*- End of function --------------------------------------------------------*/ | |
878 | |
879 /* | |
880 * Decodes a 4-bit CCITT G.726_32 ADPCM code and returns | |
881 * the resulting 16-bit linear PCM, A-law or u-law sample value. | |
882 */ | |
883 static int16_t g726_32_decoder(g726_state_t *s, uint8_t code) | |
884 { | |
885 int16_t sezi; | |
886 int16_t sei; | |
887 int16_t se; | |
888 int16_t sr; | |
889 int16_t dq; | |
890 int16_t dqsez; | |
891 int y; | |
892 | |
893 /* Mask to get proper bits */ | |
894 code &= 0x0F; | |
895 sezi = predictor_zero(s); | |
896 sei = sezi + predictor_pole(s); | |
897 | |
898 y = step_size(s); | |
899 dq = reconstruct(code & 8, g726_32_dqlntab[code], y); | |
900 | |
901 /* Reconstruct the signal */ | |
902 se = sei >> 1; | |
903 sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); | |
904 | |
905 /* Pole prediction difference */ | |
906 dqsez = sr + (sezi >> 1) - se; | |
907 | |
908 update(s, y, g726_32_witab[code], g726_32_fitab[code], dq, sr, dqsez); | |
909 | |
910 switch (s->ext_coding) | |
911 { | |
912 case G726_ENCODING_ALAW: | |
913 return tandem_adjust_alaw(sr, se, y, code, 8, qtab_726_32, 15); | |
914 case G726_ENCODING_ULAW: | |
915 return tandem_adjust_ulaw(sr, se, y, code, 8, qtab_726_32, 15); | |
916 } | |
917 return (sr << 2); | |
918 } | |
919 /*- End of function --------------------------------------------------------*/ | |
920 | |
921 /* | |
922 * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens | |
923 * the resulting 5-bit CCITT G.726 40Kbps code. | |
924 */ | |
925 static uint8_t g726_40_encoder(g726_state_t *s, int16_t amp) | |
926 { | |
927 int16_t sei; | |
928 int16_t sezi; | |
929 int16_t se; | |
930 int16_t d; | |
931 int16_t sr; | |
932 int16_t dqsez; | |
933 int16_t dq; | |
934 int16_t i; | |
935 int y; | |
936 | |
937 sezi = predictor_zero(s); | |
938 sei = sezi + predictor_pole(s); | |
939 se = sei >> 1; | |
940 d = amp - se; | |
941 | |
942 /* Quantize prediction difference */ | |
943 y = step_size(s); | |
944 i = quantize(d, y, qtab_726_40, 31); | |
945 dq = reconstruct(i & 0x10, g726_40_dqlntab[i], y); | |
946 | |
947 /* Reconstruct the signal */ | |
948 sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); | |
949 | |
950 /* Pole prediction difference */ | |
951 dqsez = sr + (sezi >> 1) - se; | |
952 | |
953 update(s, y, g726_40_witab[i], g726_40_fitab[i], dq, sr, dqsez); | |
954 return (uint8_t) i; | |
955 } | |
956 /*- End of function --------------------------------------------------------*/ | |
957 | |
958 /* | |
959 * Decodes a 5-bit CCITT G.726 40Kbps code and returns | |
960 * the resulting 16-bit linear PCM, A-law or u-law sample value. | |
961 */ | |
962 static int16_t g726_40_decoder(g726_state_t *s, uint8_t code) | |
963 { | |
964 int16_t sezi; | |
965 int16_t sei; | |
966 int16_t se; | |
967 int16_t sr; | |
968 int16_t dq; | |
969 int16_t dqsez; | |
970 int y; | |
971 | |
972 /* Mask to get proper bits */ | |
973 code &= 0x1F; | |
974 sezi = predictor_zero(s); | |
975 sei = sezi + predictor_pole(s); | |
976 | |
977 y = step_size(s); | |
978 dq = reconstruct(code & 0x10, g726_40_dqlntab[code], y); | |
979 | |
980 /* Reconstruct the signal */ | |
981 se = sei >> 1; | |
982 sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); | |
983 | |
984 /* Pole prediction difference */ | |
985 dqsez = sr + (sezi >> 1) - se; | |
986 | |
987 update(s, y, g726_40_witab[code], g726_40_fitab[code], dq, sr, dqsez); | |
988 | |
989 switch (s->ext_coding) | |
990 { | |
991 case G726_ENCODING_ALAW: | |
992 return tandem_adjust_alaw(sr, se, y, code, 0x10, qtab_726_40, 31); | |
993 case G726_ENCODING_ULAW: | |
994 return tandem_adjust_ulaw(sr, se, y, code, 0x10, qtab_726_40, 31); | |
995 } | |
996 return (sr << 2); | |
997 } | |
998 /*- End of function --------------------------------------------------------*/ | |
999 | |
1000 SPAN_DECLARE(g726_state_t *) g726_init(g726_state_t *s, int bit_rate, int ext_coding, int packing) | |
1001 { | |
1002 int i; | |
1003 | |
1004 if (bit_rate != 16000 && bit_rate != 24000 && bit_rate != 32000 && bit_rate != 40000) | |
1005 return NULL; | |
1006 if (s == NULL) | |
1007 { | |
1008 if ((s = (g726_state_t *) malloc(sizeof(*s))) == NULL) | |
1009 return NULL; | |
1010 } | |
1011 s->yl = 34816; | |
1012 s->yu = 544; | |
1013 s->dms = 0; | |
1014 s->dml = 0; | |
1015 s->ap = 0; | |
1016 s->rate = bit_rate; | |
1017 s->ext_coding = ext_coding; | |
1018 s->packing = packing; | |
1019 for (i = 0; i < 2; i++) | |
1020 { | |
1021 s->a[i] = 0; | |
1022 s->pk[i] = 0; | |
1023 s->sr[i] = 32; | |
1024 } | |
1025 for (i = 0; i < 6; i++) | |
1026 { | |
1027 s->b[i] = 0; | |
1028 s->dq[i] = 32; | |
1029 } | |
1030 s->td = FALSE; | |
1031 switch (bit_rate) | |
1032 { | |
1033 case 16000: | |
1034 s->enc_func = g726_16_encoder; | |
1035 s->dec_func = g726_16_decoder; | |
1036 s->bits_per_sample = 2; | |
1037 break; | |
1038 case 24000: | |
1039 s->enc_func = g726_24_encoder; | |
1040 s->dec_func = g726_24_decoder; | |
1041 s->bits_per_sample = 3; | |
1042 break; | |
1043 case 32000: | |
1044 default: | |
1045 s->enc_func = g726_32_encoder; | |
1046 s->dec_func = g726_32_decoder; | |
1047 s->bits_per_sample = 4; | |
1048 break; | |
1049 case 40000: | |
1050 s->enc_func = g726_40_encoder; | |
1051 s->dec_func = g726_40_decoder; | |
1052 s->bits_per_sample = 5; | |
1053 break; | |
1054 } | |
1055 bitstream_init(&s->bs, (s->packing != G726_PACKING_LEFT)); | |
1056 return s; | |
1057 } | |
1058 /*- End of function --------------------------------------------------------*/ | |
1059 | |
1060 SPAN_DECLARE(int) g726_release(g726_state_t *s) | |
1061 { | |
1062 return 0; | |
1063 } | |
1064 /*- End of function --------------------------------------------------------*/ | |
1065 | |
1066 SPAN_DECLARE(int) g726_free(g726_state_t *s) | |
1067 { | |
1068 free(s); | |
1069 return 0; | |
1070 } | |
1071 /*- End of function --------------------------------------------------------*/ | |
1072 | |
1073 SPAN_DECLARE(int) g726_decode(g726_state_t *s, | |
1074 int16_t amp[], | |
1075 const uint8_t g726_data[], | |
1076 int g726_bytes) | |
1077 { | |
1078 int i; | |
1079 int samples; | |
1080 uint8_t code; | |
1081 int sl; | |
1082 | |
1083 for (samples = i = 0; ; ) | |
1084 { | |
1085 if (s->packing != G726_PACKING_NONE) | |
1086 { | |
1087 /* Unpack the code bits */ | |
1088 if (s->packing != G726_PACKING_LEFT) | |
1089 { | |
1090 if (s->bs.residue < s->bits_per_sample) | |
1091 { | |
1092 if (i >= g726_bytes) | |
1093 break; | |
1094 s->bs.bitstream |= (g726_data[i++] << s->bs.residue); | |
1095 s->bs.residue += 8; | |
1096 } | |
1097 code = (uint8_t) (s->bs.bitstream & ((1 << s->bits_per_sample) - 1)); | |
1098 s->bs.bitstream >>= s->bits_per_sample; | |
1099 } | |
1100 else | |
1101 { | |
1102 if (s->bs.residue < s->bits_per_sample) | |
1103 { | |
1104 if (i >= g726_bytes) | |
1105 break; | |
1106 s->bs.bitstream = (s->bs.bitstream << 8) | g726_data[i++]; | |
1107 s->bs.residue += 8; | |
1108 } | |
1109 code = (uint8_t) ((s->bs.bitstream >> (s->bs.residue - s->bits_per_sample)) & ((1 << s->bits_per_sample) - 1)); | |
1110 } | |
1111 s->bs.residue -= s->bits_per_sample; | |
1112 } | |
1113 else | |
1114 { | |
1115 if (i >= g726_bytes) | |
1116 break; | |
1117 code = g726_data[i++]; | |
1118 } | |
1119 sl = s->dec_func(s, code); | |
1120 if (s->ext_coding != G726_ENCODING_LINEAR) | |
1121 ((uint8_t *) amp)[samples++] = (uint8_t) sl; | |
1122 else | |
1123 amp[samples++] = (int16_t) sl; | |
1124 } | |
1125 return samples; | |
1126 } | |
1127 /*- End of function --------------------------------------------------------*/ | |
1128 | |
1129 SPAN_DECLARE(int) g726_encode(g726_state_t *s, | |
1130 uint8_t g726_data[], | |
1131 const int16_t amp[], | |
1132 int len) | |
1133 { | |
1134 int i; | |
1135 int g726_bytes; | |
1136 int16_t sl; | |
1137 uint8_t code; | |
1138 | |
1139 for (g726_bytes = i = 0; i < len; i++) | |
1140 { | |
1141 /* Linearize the input sample to 14-bit PCM */ | |
1142 switch (s->ext_coding) | |
1143 { | |
1144 case G726_ENCODING_ALAW: | |
1145 sl = alaw_to_linear(((const uint8_t *) amp)[i]) >> 2; | |
1146 break; | |
1147 case G726_ENCODING_ULAW: | |
1148 sl = ulaw_to_linear(((const uint8_t *) amp)[i]) >> 2; | |
1149 break; | |
1150 default: | |
1151 sl = amp[i] >> 2; | |
1152 break; | |
1153 } | |
1154 code = s->enc_func(s, sl); | |
1155 if (s->packing != G726_PACKING_NONE) | |
1156 { | |
1157 /* Pack the code bits */ | |
1158 if (s->packing != G726_PACKING_LEFT) | |
1159 { | |
1160 s->bs.bitstream |= (code << s->bs.residue); | |
1161 s->bs.residue += s->bits_per_sample; | |
1162 if (s->bs.residue >= 8) | |
1163 { | |
1164 g726_data[g726_bytes++] = (uint8_t) (s->bs.bitstream & 0xFF); | |
1165 s->bs.bitstream >>= 8; | |
1166 s->bs.residue -= 8; | |
1167 } | |
1168 } | |
1169 else | |
1170 { | |
1171 s->bs.bitstream = (s->bs.bitstream << s->bits_per_sample) | code; | |
1172 s->bs.residue += s->bits_per_sample; | |
1173 if (s->bs.residue >= 8) | |
1174 { | |
1175 g726_data[g726_bytes++] = (uint8_t) ((s->bs.bitstream >> (s->bs.residue - 8)) & 0xFF); | |
1176 s->bs.residue -= 8; | |
1177 } | |
1178 } | |
1179 } | |
1180 else | |
1181 { | |
1182 g726_data[g726_bytes++] = (uint8_t) code; | |
1183 } | |
1184 } | |
1185 return g726_bytes; | |
1186 } | |
1187 /*- End of function --------------------------------------------------------*/ | |
1188 /*- End of file ------------------------------------------------------------*/ |