Mercurial > hg > audiostuff
comparison spandsp-0.0.6pre17/src/gsm0610_long_term.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:c6c5a16ce2f2 | 4:26cd8f1ef0b1 |
---|---|
1 /* | |
2 * SpanDSP - a series of DSP components for telephony | |
3 * | |
4 * gsm0610_long_term.c - GSM 06.10 full rate speech codec. | |
5 * | |
6 * Written by Steve Underwood <steveu@coppice.org> | |
7 * | |
8 * Copyright (C) 2006 Steve Underwood | |
9 * | |
10 * All rights reserved. | |
11 * | |
12 * This program is free software; you can redistribute it and/or modify | |
13 * it under the terms of the GNU Lesser General Public License version 2.1, | |
14 * as published by the Free Software Foundation. | |
15 * | |
16 * This program is distributed in the hope that it will be useful, | |
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 * GNU Lesser General Public License for more details. | |
20 * | |
21 * You should have received a copy of the GNU Lesser General Public | |
22 * License along with this program; if not, write to the Free Software | |
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
24 * | |
25 * This code is based on the widely used GSM 06.10 code available from | |
26 * http://kbs.cs.tu-berlin.de/~jutta/toast.html | |
27 * | |
28 * $Id: gsm0610_long_term.c,v 1.24 2009/04/20 16:36:36 steveu Exp $ | |
29 */ | |
30 | |
31 /*! \file */ | |
32 | |
33 #if defined(HAVE_CONFIG_H) | |
34 #include "config.h" | |
35 #endif | |
36 | |
37 #include <assert.h> | |
38 #include <inttypes.h> | |
39 #if defined(HAVE_TGMATH_H) | |
40 #include <tgmath.h> | |
41 #endif | |
42 #if defined(HAVE_MATH_H) | |
43 #include <math.h> | |
44 #endif | |
45 #include "floating_fudge.h" | |
46 #include <stdlib.h> | |
47 | |
48 #include "spandsp/telephony.h" | |
49 #include "spandsp/fast_convert.h" | |
50 #include "spandsp/bitstream.h" | |
51 #include "spandsp/saturated.h" | |
52 #include "spandsp/gsm0610.h" | |
53 | |
54 #include "gsm0610_local.h" | |
55 | |
56 /* Table 4.3a Decision level of the LTP gain quantizer */ | |
57 static const int16_t gsm_DLB[4] = | |
58 { | |
59 6554, 16384, 26214, 32767 | |
60 }; | |
61 | |
62 /* Table 4.3b Quantization levels of the LTP gain quantizer */ | |
63 static const int16_t gsm_QLB[4] = | |
64 { | |
65 3277, 11469, 21299, 32767 | |
66 }; | |
67 | |
68 /* 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION */ | |
69 | |
70 static int32_t gsm0610_max_cross_corr(const int16_t *wt, const int16_t *dp, int16_t *index_out) | |
71 { | |
72 int32_t max; | |
73 int32_t index; | |
74 int32_t res; | |
75 int i; | |
76 | |
77 max = 0; | |
78 index = 40; /* index for the maximum cross-correlation */ | |
79 | |
80 for (i = 40; i <= 120; i++) | |
81 { | |
82 #if defined(__GNUC__) && defined(SPANDSP_USE_MMX) && defined(__x86_64__) | |
83 __asm__ __volatile__( | |
84 " emms;\n" | |
85 " .p2align 2;\n" | |
86 " movq (%%rdi),%%mm0;\n" | |
87 " movq (%%rsi),%%mm2;\n" | |
88 " pmaddwd %%mm2,%%mm0;\n" | |
89 " movq 8(%%rdi),%%mm1;\n" | |
90 " movq 8(%%rsi),%%mm2;\n" | |
91 " pmaddwd %%mm2,%%mm1;\n" | |
92 " paddd %%mm1,%%mm0;\n" | |
93 " movq 16(%%rdi),%%mm1;\n" | |
94 " movq 16(%%rsi),%%mm2;\n" | |
95 " pmaddwd %%mm2,%%mm1;\n" | |
96 " paddd %%mm1,%%mm0;\n" | |
97 " movq 24(%%rdi),%%mm1;\n" | |
98 " movq 24(%%rsi),%%mm2;\n" | |
99 " pmaddwd %%mm2,%%mm1;\n" | |
100 " paddd %%mm1,%%mm0;\n" | |
101 " movq 32(%%rdi),%%mm1;\n" | |
102 " movq 32(%%rsi),%%mm2;\n" | |
103 " pmaddwd %%mm2,%%mm1;\n" | |
104 " paddd %%mm1,%%mm0;\n" | |
105 " movq 40(%%rdi),%%mm1;\n" | |
106 " movq 40(%%rsi),%%mm2;\n" | |
107 " pmaddwd %%mm2,%%mm1;\n" | |
108 " paddd %%mm1,%%mm0;\n" | |
109 " movq 48(%%rdi),%%mm1;\n" | |
110 " movq 48(%%rsi),%%mm2;\n" | |
111 " pmaddwd %%mm2,%%mm1;\n" | |
112 " paddd %%mm1,%%mm0;\n" | |
113 " movq 56(%%rdi),%%mm1;\n" | |
114 " movq 56(%%rsi),%%mm2;\n" | |
115 " pmaddwd %%mm2,%%mm1;\n" | |
116 " paddd %%mm1,%%mm0;\n" | |
117 " movq 64(%%rdi),%%mm1;\n" | |
118 " movq 64(%%rsi),%%mm2;\n" | |
119 " pmaddwd %%mm2,%%mm1;\n" | |
120 " paddd %%mm1,%%mm0;\n" | |
121 " movq 72(%%rdi),%%mm1;\n" | |
122 " movq 72(%%rsi),%%mm2;\n" | |
123 " pmaddwd %%mm2,%%mm1;\n" | |
124 " paddd %%mm1,%%mm0;\n" | |
125 " movq %%mm0,%%mm1;\n" | |
126 " punpckhdq %%mm0,%%mm1;\n" /* mm1 has high int32 of mm0 dup'd */ | |
127 " paddd %%mm1,%%mm0;\n" | |
128 " movd %%mm0,%[res];\n" | |
129 " emms;\n" | |
130 : [res] "=r" (res) | |
131 : "D" (wt), "S" (&dp[-i]) | |
132 ); | |
133 #elif defined(__GNUC__) && defined(SPANDSP_USE_MMX) && defined(__i386__) | |
134 __asm__ __volatile__( | |
135 " emms;\n" | |
136 " .p2align 2;\n" | |
137 " movq (%%edi),%%mm0;\n" | |
138 " movq (%%esi),%%mm2;\n" | |
139 " pmaddwd %%mm2,%%mm0;\n" | |
140 " movq 8(%%edi),%%mm1;\n" | |
141 " movq 8(%%esi),%%mm2;\n" | |
142 " pmaddwd %%mm2,%%mm1;\n" | |
143 " paddd %%mm1,%%mm0;\n" | |
144 " movq 16(%%edi),%%mm1;\n" | |
145 " movq 16(%%esi),%%mm2;\n" | |
146 " pmaddwd %%mm2,%%mm1;\n" | |
147 " paddd %%mm1,%%mm0;\n" | |
148 " movq 24(%%edi),%%mm1;\n" | |
149 " movq 24(%%esi),%%mm2;\n" | |
150 " pmaddwd %%mm2,%%mm1;\n" | |
151 " paddd %%mm1,%%mm0;\n" | |
152 " movq 32(%%edi),%%mm1;\n" | |
153 " movq 32(%%esi),%%mm2;\n" | |
154 " pmaddwd %%mm2,%%mm1;\n" | |
155 " paddd %%mm1,%%mm0;\n" | |
156 " movq 40(%%edi),%%mm1;\n" | |
157 " movq 40(%%esi),%%mm2;\n" | |
158 " pmaddwd %%mm2,%%mm1;\n" | |
159 " paddd %%mm1,%%mm0;\n" | |
160 " movq 48(%%edi),%%mm1;\n" | |
161 " movq 48(%%esi),%%mm2;\n" | |
162 " pmaddwd %%mm2,%%mm1;\n" | |
163 " paddd %%mm1,%%mm0;\n" | |
164 " movq 56(%%edi),%%mm1;\n" | |
165 " movq 56(%%esi),%%mm2;\n" | |
166 " pmaddwd %%mm2,%%mm1;\n" | |
167 " paddd %%mm1,%%mm0;\n" | |
168 " movq 64(%%edi),%%mm1;\n" | |
169 " movq 64(%%esi),%%mm2;\n" | |
170 " pmaddwd %%mm2,%%mm1;\n" | |
171 " paddd %%mm1,%%mm0;\n" | |
172 " movq 72(%%edi),%%mm1;\n" | |
173 " movq 72(%%esi),%%mm2;\n" | |
174 " pmaddwd %%mm2,%%mm1;\n" | |
175 " paddd %%mm1,%%mm0;\n" | |
176 " movq %%mm0,%%mm1;\n" | |
177 " punpckhdq %%mm0,%%mm1;\n" /* mm1 has high int32 of mm0 dup'd */ | |
178 " paddd %%mm1,%%mm0;\n" | |
179 " movd %%mm0,%[res];\n" | |
180 " emms;\n" | |
181 : [res] "=r" (res) | |
182 : "D" (wt), "S" (&dp[-i]) | |
183 ); | |
184 #else | |
185 res = (wt[0]*dp[0 - i]) | |
186 + (wt[1]*dp[1 - i]) | |
187 + (wt[2]*dp[2 - i]) | |
188 + (wt[3]*dp[3 - i]) | |
189 + (wt[4]*dp[4 - i]) | |
190 + (wt[5]*dp[5 - i]) | |
191 + (wt[6]*dp[6 - i]) | |
192 + (wt[7]*dp[7 - i]) | |
193 + (wt[8]*dp[8 - i]) | |
194 + (wt[9]*dp[9 - i]) | |
195 + (wt[10]*dp[10 - i]) | |
196 + (wt[11]*dp[11 - i]) | |
197 + (wt[12]*dp[12 - i]) | |
198 + (wt[13]*dp[13 - i]) | |
199 + (wt[14]*dp[14 - i]) | |
200 + (wt[15]*dp[15 - i]) | |
201 + (wt[16]*dp[16 - i]) | |
202 + (wt[17]*dp[17 - i]) | |
203 + (wt[18]*dp[18 - i]) | |
204 + (wt[19]*dp[19 - i]) | |
205 + (wt[20]*dp[20 - i]) | |
206 + (wt[21]*dp[21 - i]) | |
207 + (wt[22]*dp[22 - i]) | |
208 + (wt[23]*dp[23 - i]) | |
209 + (wt[24]*dp[24 - i]) | |
210 + (wt[25]*dp[25 - i]) | |
211 + (wt[26]*dp[26 - i]) | |
212 + (wt[27]*dp[27 - i]) | |
213 + (wt[28]*dp[28 - i]) | |
214 + (wt[29]*dp[29 - i]) | |
215 + (wt[30]*dp[30 - i]) | |
216 + (wt[31]*dp[31 - i]) | |
217 + (wt[32]*dp[32 - i]) | |
218 + (wt[33]*dp[33 - i]) | |
219 + (wt[34]*dp[34 - i]) | |
220 + (wt[35]*dp[35 - i]) | |
221 + (wt[36]*dp[36 - i]) | |
222 + (wt[37]*dp[37 - i]) | |
223 + (wt[38]*dp[38 - i]) | |
224 + (wt[39]*dp[39 - i]); | |
225 #endif | |
226 if (res > max) | |
227 { | |
228 max = res; | |
229 index = i; | |
230 } | |
231 /*endif*/ | |
232 } | |
233 /*endfor*/ | |
234 *index_out = index; | |
235 return max; | |
236 } | |
237 /*- End of function --------------------------------------------------------*/ | |
238 | |
239 /* This procedure computes the LTP gain (bc) and the LTP lag (Nc) | |
240 for the long term analysis filter. This is done by calculating a | |
241 maximum of the cross-correlation function between the current | |
242 sub-segment short term residual signal d[0..39] (output of | |
243 the short term analysis filter; for simplification the index | |
244 of this array begins at 0 and ends at 39 for each sub-segment of the | |
245 RPE-LTP analysis) and the previous reconstructed short term | |
246 residual signal dp[ -120 .. -1 ]. A dynamic scaling must be | |
247 performed to avoid overflow. */ | |
248 | |
249 /* This procedure exists in three versions. First, the integer | |
250 version; then, the two floating point versions (as another | |
251 function), with or without scaling. */ | |
252 | |
253 static int16_t evaluate_ltp_parameters(int16_t d[40], | |
254 int16_t *dp, // [-120..-1] IN | |
255 int16_t *Nc_out) | |
256 { | |
257 int k; | |
258 int16_t bc; | |
259 int16_t wt[40]; | |
260 int32_t L_max; | |
261 int32_t L_power; | |
262 int16_t R; | |
263 int16_t S; | |
264 int16_t dmax; | |
265 int16_t scale; | |
266 int16_t temp; | |
267 int32_t L_temp; | |
268 | |
269 /* Search of the optimum scaling of d[0..39]. */ | |
270 dmax = 0; | |
271 for (k = 0; k < 40; k++) | |
272 { | |
273 temp = d[k]; | |
274 temp = saturated_abs16(temp); | |
275 if (temp > dmax) | |
276 dmax = temp; | |
277 /*endif*/ | |
278 } | |
279 /*endfor*/ | |
280 | |
281 if (dmax == 0) | |
282 { | |
283 temp = 0; | |
284 } | |
285 else | |
286 { | |
287 assert(dmax > 0); | |
288 temp = gsm0610_norm((int32_t) dmax << 16); | |
289 } | |
290 /*endif*/ | |
291 | |
292 if (temp > 6) | |
293 scale = 0; | |
294 else | |
295 scale = (int16_t) (6 - temp); | |
296 /*endif*/ | |
297 assert(scale >= 0); | |
298 | |
299 /* Initialization of a working array wt */ | |
300 for (k = 0; k < 40; k++) | |
301 wt[k] = d[k] >> scale; | |
302 /*endfor*/ | |
303 | |
304 /* Search for the maximum cross-correlation and coding of the LTP lag */ | |
305 L_max = gsm0610_max_cross_corr(wt, dp, Nc_out); | |
306 L_max <<= 1; | |
307 | |
308 /* Rescaling of L_max */ | |
309 assert(scale <= 100 && scale >= -100); | |
310 L_max = L_max >> (6 - scale); | |
311 | |
312 assert(*Nc_out <= 120 && *Nc_out >= 40); | |
313 | |
314 /* Compute the power of the reconstructed short term residual signal dp[..] */ | |
315 L_power = 0; | |
316 for (k = 0; k < 40; k++) | |
317 { | |
318 L_temp = dp[k - *Nc_out] >> 3; | |
319 L_power += L_temp*L_temp; | |
320 } | |
321 /*endfor*/ | |
322 L_power <<= 1; /* from L_MULT */ | |
323 | |
324 /* Normalization of L_max and L_power */ | |
325 if (L_max <= 0) | |
326 return 0; | |
327 /*endif*/ | |
328 if (L_max >= L_power) | |
329 return 3; | |
330 /*endif*/ | |
331 temp = gsm0610_norm(L_power); | |
332 | |
333 R = (int16_t) ((L_max << temp) >> 16); | |
334 S = (int16_t) ((L_power << temp) >> 16); | |
335 | |
336 /* Coding of the LTP gain */ | |
337 | |
338 /* Table 4.3a must be used to obtain the level DLB[i] for the | |
339 quantization of the LTP gain b to get the coded version bc. */ | |
340 for (bc = 0; bc <= 2; bc++) | |
341 { | |
342 if (R <= saturated_mul16(S, gsm_DLB[bc])) | |
343 break; | |
344 /*endif*/ | |
345 } | |
346 /*endfor*/ | |
347 return bc; | |
348 } | |
349 /*- End of function --------------------------------------------------------*/ | |
350 | |
351 /* 4.2.12 */ | |
352 static void long_term_analysis_filtering(int16_t bc, | |
353 int16_t Nc, | |
354 int16_t *dp, // previous d [-120..-1] IN | |
355 int16_t d[40], | |
356 int16_t dpp[40], | |
357 int16_t e[40]) | |
358 { | |
359 int k; | |
360 | |
361 /* In this part, we have to decode the bc parameter to compute | |
362 the samples of the estimate dpp[0..39]. The decoding of bc needs the | |
363 use of table 4.3b. The long term residual signal e[0..39] | |
364 is then calculated to be fed to the RPE encoding section. */ | |
365 for (k = 0; k < 40; k++) | |
366 { | |
367 dpp[k] = gsm_mult_r(gsm_QLB[bc], dp[k - Nc]); | |
368 e[k] = saturated_sub16(d[k], dpp[k]); | |
369 } | |
370 /*endfor*/ | |
371 } | |
372 /*- End of function --------------------------------------------------------*/ | |
373 | |
374 /* 4x for 160 samples */ | |
375 void gsm0610_long_term_predictor(gsm0610_state_t *s, | |
376 int16_t d[40], | |
377 int16_t *dp, // [-120..-1] d' IN | |
378 int16_t e[40], | |
379 int16_t dpp[40], | |
380 int16_t *Nc, | |
381 int16_t *bc) | |
382 { | |
383 #if 0 | |
384 assert(d); | |
385 assert(dp); | |
386 assert(e); | |
387 assert(dpp); | |
388 assert(Nc); | |
389 assert(bc); | |
390 #endif | |
391 | |
392 *bc = evaluate_ltp_parameters(d, dp, Nc); | |
393 long_term_analysis_filtering(*bc, *Nc, dp, d, dpp, e); | |
394 } | |
395 /*- End of function --------------------------------------------------------*/ | |
396 | |
397 /* 4.3.2 */ | |
398 void gsm0610_long_term_synthesis_filtering(gsm0610_state_t *s, | |
399 int16_t Ncr, | |
400 int16_t bcr, | |
401 int16_t erp[40], | |
402 int16_t *drp) // [-120..-1] IN, [0..40] OUT | |
403 { | |
404 int k; | |
405 int16_t brp; | |
406 int16_t drpp; | |
407 int16_t Nr; | |
408 | |
409 /* This procedure uses the bcr and Ncr parameters to realize the | |
410 long term synthesis filter. The decoding of bcr needs | |
411 table 4.3b. */ | |
412 | |
413 /* Check the limits of Nr. */ | |
414 Nr = (Ncr < 40 || Ncr > 120) ? s->nrp : Ncr; | |
415 s->nrp = Nr; | |
416 assert (Nr >= 40 && Nr <= 120); | |
417 | |
418 /* Decode the LTP gain, bcr */ | |
419 brp = gsm_QLB[bcr]; | |
420 | |
421 /* Compute the reconstructed short term residual signal, drp[0..39] */ | |
422 assert(brp != INT16_MIN); | |
423 for (k = 0; k < 40; k++) | |
424 { | |
425 drpp = gsm_mult_r(brp, drp[k - Nr]); | |
426 drp[k] = saturated_add16(erp[k], drpp); | |
427 } | |
428 /*endfor*/ | |
429 | |
430 /* Update the reconstructed short term residual signal, drp[-1..-120] */ | |
431 for (k = 0; k < 120; k++) | |
432 drp[k - 120] = drp[k - 80]; | |
433 /*endfor*/ | |
434 } | |
435 /*- End of function --------------------------------------------------------*/ | |
436 /*- End of file ------------------------------------------------------------*/ |