Mercurial > hg > audiostuff
comparison spandsp-0.0.6pre17/src/gsm0610_short_term.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:c6c5a16ce2f2 | 4:26cd8f1ef0b1 |
---|---|
1 /* | |
2 * SpanDSP - a series of DSP components for telephony | |
3 * | |
4 * gsm0610_short_term.c - GSM 06.10 full rate speech codec. | |
5 * | |
6 * Written by Steve Underwood <steveu@coppice.org> | |
7 * | |
8 * Copyright (C) 2006 Steve Underwood | |
9 * | |
10 * All rights reserved. | |
11 * | |
12 * This program is free software; you can redistribute it and/or modify | |
13 * it under the terms of the GNU Lesser General Public License version 2.1, | |
14 * as published by the Free Software Foundation. | |
15 * | |
16 * This program is distributed in the hope that it will be useful, | |
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 * GNU Lesser General Public License for more details. | |
20 * | |
21 * You should have received a copy of the GNU Lesser General Public | |
22 * License along with this program; if not, write to the Free Software | |
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
24 * | |
25 * This code is based on the widely used GSM 06.10 code available from | |
26 * http://kbs.cs.tu-berlin.de/~jutta/toast.html | |
27 * | |
28 * $Id: gsm0610_short_term.c,v 1.19 2009/02/03 16:28:39 steveu Exp $ | |
29 */ | |
30 | |
31 /*! \file */ | |
32 | |
33 #if defined(HAVE_CONFIG_H) | |
34 #include "config.h" | |
35 #endif | |
36 | |
37 #include <assert.h> | |
38 #include <inttypes.h> | |
39 #if defined(HAVE_TGMATH_H) | |
40 #include <tgmath.h> | |
41 #endif | |
42 #if defined(HAVE_MATH_H) | |
43 #include <math.h> | |
44 #endif | |
45 #include "floating_fudge.h" | |
46 #include <stdlib.h> | |
47 | |
48 #include "spandsp/telephony.h" | |
49 #include "spandsp/fast_convert.h" | |
50 #include "spandsp/bitstream.h" | |
51 #include "spandsp/saturated.h" | |
52 #include "spandsp/gsm0610.h" | |
53 | |
54 #include "gsm0610_local.h" | |
55 | |
56 /* SHORT TERM ANALYSIS FILTERING SECTION */ | |
57 | |
58 /* 4.2.8 */ | |
59 static void decode_log_area_ratios(int16_t LARc[8], int16_t *LARpp) | |
60 { | |
61 int16_t temp1; | |
62 | |
63 /* This procedure requires for efficient implementation | |
64 two tables. | |
65 INVA[1..8] = integer((32768*8)/real_A[1..8]) | |
66 MIC[1..8] = minimum value of the LARc[1..8] | |
67 */ | |
68 | |
69 /* Compute the LARpp[1..8] */ | |
70 | |
71 #undef STEP | |
72 #define STEP(B,MIC,INVA) \ | |
73 temp1 = saturated_add16(*LARc++, MIC) << 10; \ | |
74 temp1 = saturated_sub16(temp1, B << 1); \ | |
75 temp1 = gsm_mult_r(INVA, temp1); \ | |
76 *LARpp++ = saturated_add16(temp1, temp1); | |
77 | |
78 STEP( 0, -32, 13107); | |
79 STEP( 0, -32, 13107); | |
80 STEP( 2048, -16, 13107); | |
81 STEP(-2560, -16, 13107); | |
82 | |
83 STEP( 94, -8, 19223); | |
84 STEP(-1792, -8, 17476); | |
85 STEP( -341, -4, 31454); | |
86 STEP(-1144, -4, 29708); | |
87 | |
88 /* NOTE: the addition of *MIC is used to restore the sign of *LARc. */ | |
89 } | |
90 /*- End of function --------------------------------------------------------*/ | |
91 | |
92 /* 4.2.9 */ | |
93 | |
94 /* Computation of the quantized reflection coefficients */ | |
95 | |
96 /* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8] */ | |
97 | |
98 /* Within each frame of 160 analyzed speech samples the short term | |
99 analysis and synthesis filters operate with four different sets of | |
100 coefficients, derived from the previous set of decoded LARs(LARpp(j - 1)) | |
101 and the actual set of decoded LARs (LARpp(j)) | |
102 | |
103 (Initial value: LARpp(j - 1)[1..8] = 0.) | |
104 */ | |
105 | |
106 static void coefficients_0_12(int16_t *LARpp_j_1, | |
107 int16_t *LARpp_j, | |
108 int16_t *LARp) | |
109 { | |
110 int i; | |
111 | |
112 for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) | |
113 { | |
114 *LARp = saturated_add16(*LARpp_j_1 >> 2, *LARpp_j >> 2); | |
115 *LARp = saturated_add16(*LARp, *LARpp_j_1 >> 1); | |
116 } | |
117 /*endfor*/ | |
118 } | |
119 /*- End of function --------------------------------------------------------*/ | |
120 | |
121 static void coefficients_13_26(int16_t *LARpp_j_1, | |
122 int16_t *LARpp_j, | |
123 int16_t *LARp) | |
124 { | |
125 int i; | |
126 | |
127 for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) | |
128 *LARp = saturated_add16(*LARpp_j_1 >> 1, *LARpp_j >> 1); | |
129 /*endfor*/ | |
130 } | |
131 /*- End of function --------------------------------------------------------*/ | |
132 | |
133 static void coefficients_27_39(int16_t *LARpp_j_1, | |
134 int16_t *LARpp_j, | |
135 int16_t *LARp) | |
136 { | |
137 int i; | |
138 | |
139 for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) | |
140 { | |
141 *LARp = saturated_add16(*LARpp_j_1 >> 2, *LARpp_j >> 2); | |
142 *LARp = saturated_add16(*LARp, *LARpp_j >> 1); | |
143 } | |
144 /*endfor*/ | |
145 } | |
146 /*- End of function --------------------------------------------------------*/ | |
147 | |
148 static void coefficients_40_159(int16_t *LARpp_j, int16_t *LARp) | |
149 { | |
150 int i; | |
151 | |
152 for (i = 1; i <= 8; i++) | |
153 *LARp++ = *LARpp_j++; | |
154 /*endfor*/ | |
155 } | |
156 /*- End of function --------------------------------------------------------*/ | |
157 | |
158 /* 4.2.9.2 */ | |
159 static void larp_to_rp(int16_t LARp[8]) | |
160 { | |
161 int i; | |
162 int16_t *LARpx; | |
163 int16_t temp; | |
164 | |
165 /* The input to this procedure is the interpolated LARp[0..7] array. | |
166 The reflection coefficients, rp[i], are used in the analysis | |
167 filter and in the synthesis filter. | |
168 */ | |
169 | |
170 LARpx = LARp; | |
171 for (i = 1; i <= 8; i++, LARpx++) | |
172 { | |
173 temp = *LARpx; | |
174 if (temp < 0) | |
175 { | |
176 if (temp == INT16_MIN) | |
177 temp = INT16_MAX; | |
178 else | |
179 temp = -temp; | |
180 /*endif*/ | |
181 if (temp < 11059) | |
182 temp <<= 1; | |
183 else if (temp < 20070) | |
184 temp += 11059; | |
185 else | |
186 temp = saturated_add16(temp >> 2, 26112); | |
187 /*endif*/ | |
188 *LARpx = -temp; | |
189 } | |
190 else | |
191 { | |
192 if (temp < 11059) | |
193 temp <<= 1; | |
194 else if (temp < 20070) | |
195 temp += 11059; | |
196 else | |
197 temp = saturated_add16(temp >> 2, 26112); | |
198 /*endif*/ | |
199 *LARpx = temp; | |
200 } | |
201 /*endif*/ | |
202 } | |
203 /*endfor*/ | |
204 } | |
205 /*- End of function --------------------------------------------------------*/ | |
206 | |
207 /* 4.2.10 */ | |
208 static void short_term_analysis_filtering(gsm0610_state_t *s, | |
209 int16_t rp[8], | |
210 int k_n, // k_end - k_start | |
211 int16_t amp[]) // [0..n-1] IN/OUT | |
212 { | |
213 /* This procedure computes the short term residual signal d[..] to be fed | |
214 to the RPE-LTP loop from the s[..] signal and from the local rp[..] | |
215 array (quantized reflection coefficients). As the call of this | |
216 procedure can be done in many ways (see the interpolation of the LAR | |
217 coefficient), it is assumed that the computation begins with index | |
218 k_start (for arrays d[..] and s[..]) and stops with index k_end | |
219 (k_start and k_end are defined in 4.2.9.1). This procedure also | |
220 needs to keep the array u[0..7] in memory for each call. | |
221 */ | |
222 int16_t *u0; | |
223 int16_t *u_top; | |
224 int i; | |
225 int16_t *u; | |
226 int16_t *rpx; | |
227 int32_t di; | |
228 int32_t u_out; | |
229 | |
230 u0 = s->u; | |
231 u_top = u0 + 8; | |
232 | |
233 for (i = 0; i < k_n; i++) | |
234 { | |
235 di = | |
236 u_out = amp[i]; | |
237 for (rpx = rp, u = u0; u < u_top; ) | |
238 { | |
239 int32_t ui; | |
240 int32_t rpi; | |
241 | |
242 ui = *u; | |
243 *u++ = (int16_t) u_out; | |
244 rpi = *rpx++; | |
245 u_out = ui + (((rpi*di) + 0x4000) >> 15); | |
246 di = di + (((rpi*ui) + 0x4000) >> 15); | |
247 u_out = saturate(u_out); | |
248 di = saturate(di); | |
249 } | |
250 /*endfor*/ | |
251 amp[i] = (int16_t) di; | |
252 } | |
253 /*endfor*/ | |
254 } | |
255 /*- End of function --------------------------------------------------------*/ | |
256 | |
257 static void short_term_synthesis_filtering(gsm0610_state_t *s, | |
258 int16_t rrp[8], | |
259 int k, // k_end - k_start | |
260 int16_t *wt, // [0..k - 1] | |
261 int16_t *sr) // [0..k - 1] | |
262 { | |
263 int16_t *v; | |
264 int i; | |
265 int16_t sri; | |
266 int16_t tmp1; | |
267 int16_t tmp2; | |
268 | |
269 v = s->v; | |
270 while (k--) | |
271 { | |
272 sri = *wt++; | |
273 for (i = 8; i--; ) | |
274 { | |
275 tmp1 = rrp[i]; | |
276 tmp2 = v[i]; | |
277 tmp2 = ((tmp1 == INT16_MIN && tmp2 == INT16_MIN) | |
278 ? | |
279 INT16_MAX | |
280 : | |
281 (int16_t) (((int32_t) tmp1*(int32_t) tmp2 + 16384) >> 15) & 0xFFFF); | |
282 | |
283 sri = saturated_sub16(sri, tmp2); | |
284 | |
285 tmp1 = ((tmp1 == INT16_MIN && sri == INT16_MIN) | |
286 ? | |
287 INT16_MAX | |
288 : | |
289 (int16_t) (((int32_t) tmp1*(int32_t) sri + 16384) >> 15) & 0xFFFF); | |
290 | |
291 v[i + 1] = saturated_add16(v[i], tmp1); | |
292 } | |
293 /*endfor*/ | |
294 *sr++ = | |
295 v[0] = sri; | |
296 } | |
297 /*endwhile*/ | |
298 } | |
299 /*- End of function --------------------------------------------------------*/ | |
300 | |
301 void gsm0610_short_term_analysis_filter(gsm0610_state_t *s, | |
302 int16_t LARc[8], | |
303 int16_t amp[GSM0610_FRAME_LEN]) | |
304 { | |
305 int16_t *LARpp_j; | |
306 int16_t *LARpp_j_1; | |
307 int16_t LARp[8]; | |
308 | |
309 LARpp_j = s->LARpp[s->j]; | |
310 LARpp_j_1 = s->LARpp[s->j ^= 1]; | |
311 | |
312 decode_log_area_ratios(LARc, LARpp_j); | |
313 | |
314 coefficients_0_12(LARpp_j_1, LARpp_j, LARp); | |
315 larp_to_rp(LARp); | |
316 short_term_analysis_filtering(s, LARp, 13, amp); | |
317 | |
318 coefficients_13_26(LARpp_j_1, LARpp_j, LARp); | |
319 larp_to_rp(LARp); | |
320 short_term_analysis_filtering(s, LARp, 14, amp + 13); | |
321 | |
322 coefficients_27_39(LARpp_j_1, LARpp_j, LARp); | |
323 larp_to_rp(LARp); | |
324 short_term_analysis_filtering(s, LARp, 13, amp + 27); | |
325 | |
326 coefficients_40_159(LARpp_j, LARp); | |
327 larp_to_rp(LARp); | |
328 short_term_analysis_filtering(s, LARp, 120, amp + 40); | |
329 } | |
330 /*- End of function --------------------------------------------------------*/ | |
331 | |
332 void gsm0610_short_term_synthesis_filter(gsm0610_state_t *s, | |
333 int16_t LARcr[8], | |
334 int16_t wt[GSM0610_FRAME_LEN], | |
335 int16_t amp[GSM0610_FRAME_LEN]) | |
336 { | |
337 int16_t *LARpp_j; | |
338 int16_t *LARpp_j_1; | |
339 int16_t LARp[8]; | |
340 | |
341 LARpp_j = s->LARpp[s->j]; | |
342 LARpp_j_1 = s->LARpp[s->j ^= 1]; | |
343 | |
344 decode_log_area_ratios(LARcr, LARpp_j); | |
345 | |
346 coefficients_0_12(LARpp_j_1, LARpp_j, LARp); | |
347 larp_to_rp(LARp); | |
348 short_term_synthesis_filtering(s, LARp, 13, wt, amp); | |
349 | |
350 coefficients_13_26(LARpp_j_1, LARpp_j, LARp); | |
351 larp_to_rp(LARp); | |
352 short_term_synthesis_filtering(s, LARp, 14, wt + 13, amp + 13); | |
353 | |
354 coefficients_27_39(LARpp_j_1, LARpp_j, LARp); | |
355 larp_to_rp(LARp); | |
356 short_term_synthesis_filtering(s, LARp, 13, wt + 27, amp + 27); | |
357 | |
358 coefficients_40_159(LARpp_j, LARp); | |
359 larp_to_rp(LARp); | |
360 short_term_synthesis_filtering(s, LARp, 120, wt + 40, amp + 40); | |
361 } | |
362 /*- End of function --------------------------------------------------------*/ | |
363 /*- End of file ------------------------------------------------------------*/ |