Mercurial > hg > audiostuff
comparison spandsp-0.0.6pre17/src/lpc10_voicing.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
| author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> | 
|---|---|
| date | Fri, 25 Jun 2010 15:50:58 +0200 | 
| parents | |
| children | 
   comparison
  equal
  deleted
  inserted
  replaced
| 3:c6c5a16ce2f2 | 4:26cd8f1ef0b1 | 
|---|---|
| 1 /* | |
| 2 * SpanDSP - a series of DSP components for telephony | |
| 3 * | |
| 4 * lpc10_voicing.c - LPC10 low bit rate speech codec. | |
| 5 * | |
| 6 * Written by Steve Underwood <steveu@coppice.org> | |
| 7 * | |
| 8 * Copyright (C) 2006 Steve Underwood | |
| 9 * | |
| 10 * All rights reserved. | |
| 11 * | |
| 12 * This program is free software; you can redistribute it and/or modify | |
| 13 * it under the terms of the GNU Lesser General Public License version 2.1, | |
| 14 * as published by the Free Software Foundation. | |
| 15 * | |
| 16 * This program is distributed in the hope that it will be useful, | |
| 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 19 * GNU Lesser General Public License for more details. | |
| 20 * | |
| 21 * You should have received a copy of the GNU Lesser General Public | |
| 22 * License along with this program; if not, write to the Free Software | |
| 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
| 24 * | |
| 25 * This code is based on the U.S. Department of Defense reference | |
| 26 * implementation of the LPC-10 2400 bps Voice Coder. They do not | |
| 27 * exert copyright claims on their code, and it may be freely used. | |
| 28 * | |
| 29 * $Id: lpc10_voicing.c,v 1.18 2009/02/03 16:28:39 steveu Exp $ | |
| 30 */ | |
| 31 | |
| 32 #if defined(HAVE_CONFIG_H) | |
| 33 #include "config.h" | |
| 34 #endif | |
| 35 | |
| 36 #include <stdlib.h> | |
| 37 #include <stdio.h> | |
| 38 #include <inttypes.h> | |
| 39 #include <memory.h> | |
| 40 #if defined(HAVE_TGMATH_H) | |
| 41 #include <tgmath.h> | |
| 42 #endif | |
| 43 #if defined(HAVE_MATH_H) | |
| 44 #include <math.h> | |
| 45 #endif | |
| 46 #include "floating_fudge.h" | |
| 47 | |
| 48 #include "spandsp/telephony.h" | |
| 49 #include "spandsp/fast_convert.h" | |
| 50 #include "spandsp/dc_restore.h" | |
| 51 #include "spandsp/lpc10.h" | |
| 52 #include "spandsp/private/lpc10.h" | |
| 53 | |
| 54 #include "lpc10_encdecs.h" | |
| 55 | |
| 56 static void vparms(int32_t vwin[], | |
| 57 float *inbuf, | |
| 58 float *lpbuf, | |
| 59 const int32_t buflim[], | |
| 60 int32_t half, | |
| 61 float *dither, | |
| 62 int32_t *mintau, | |
| 63 int32_t *zc, | |
| 64 int32_t *lbe, | |
| 65 int32_t *fbe, | |
| 66 float *qs, | |
| 67 float *rc1, | |
| 68 float *ar_b, | |
| 69 float *ar_f) | |
| 70 { | |
| 71 int32_t inbuf_offset; | |
| 72 int32_t lpbuf_offset; | |
| 73 int32_t vlen; | |
| 74 int32_t stop; | |
| 75 int32_t i; | |
| 76 int32_t start; | |
| 77 float r1; | |
| 78 float r2; | |
| 79 float e_pre; | |
| 80 float ap_rms; | |
| 81 float e_0; | |
| 82 float oldsgn; | |
| 83 float lp_rms; | |
| 84 float e_b; | |
| 85 float e_f; | |
| 86 float r_b; | |
| 87 float r_f; | |
| 88 float e0ap; | |
| 89 | |
| 90 /* Calculate zero crossings (ZC) and several energy and correlation */ | |
| 91 /* measures on low band and full band speech. Each measure is taken */ | |
| 92 /* over either the first or the second half of the voicing window, */ | |
| 93 /* depending on the variable HALF. */ | |
| 94 lpbuf_offset = buflim[2]; | |
| 95 lpbuf -= lpbuf_offset; | |
| 96 inbuf_offset = buflim[0]; | |
| 97 inbuf -= inbuf_offset; | |
| 98 | |
| 99 lp_rms = 0.0f; | |
| 100 ap_rms = 0.0f; | |
| 101 e_pre = 0.0f; | |
| 102 e0ap = 0.0f; | |
| 103 *rc1 = 0.0f; | |
| 104 e_0 = 0.0f; | |
| 105 e_b = 0.0f; | |
| 106 e_f = 0.0f; | |
| 107 r_f = 0.0f; | |
| 108 r_b = 0.0f; | |
| 109 *zc = 0; | |
| 110 vlen = vwin[1] - vwin[0] + 1; | |
| 111 start = vwin[0] + half*vlen/2 + 1; | |
| 112 stop = start + vlen/2 - 1; | |
| 113 | |
| 114 /* I'll use the symbol HVL in the table below to represent the value */ | |
| 115 /* VLEN/2. Note that if VLEN is odd, then HVL should be rounded down, */ | |
| 116 /* i.e., HVL = (VLEN-1)/2. */ | |
| 117 | |
| 118 /* HALF START STOP */ | |
| 119 | |
| 120 /* 1 VWIN(1)+1 VWIN(1)+HVL */ | |
| 121 /* 2 VWIN(1)+HVL+1 VWIN(1)+2*HVL */ | |
| 122 oldsgn = r_sign(1.0f, inbuf[start - 1] - *dither); | |
| 123 for (i = start; i <= stop; i++) | |
| 124 { | |
| 125 lp_rms += fabsf(lpbuf[i]); | |
| 126 ap_rms += fabsf(inbuf[i]); | |
| 127 e_pre += fabsf(inbuf[i] - inbuf[i - 1]); | |
| 128 r1 = inbuf[i]; | |
| 129 e0ap += r1*r1; | |
| 130 *rc1 += inbuf[i]*inbuf[i - 1]; | |
| 131 r1 = lpbuf[i]; | |
| 132 e_0 += r1*r1; | |
| 133 r1 = lpbuf[i - *mintau]; | |
| 134 e_b += r1*r1; | |
| 135 r1 = lpbuf[i + *mintau]; | |
| 136 e_f += r1*r1; | |
| 137 r_f += lpbuf[i]*lpbuf[i + *mintau]; | |
| 138 r_b += lpbuf[i]*lpbuf[i - *mintau]; | |
| 139 r1 = inbuf[i] + *dither; | |
| 140 if (r_sign(1.0f, r1) != oldsgn) | |
| 141 { | |
| 142 ++(*zc); | |
| 143 oldsgn = -oldsgn; | |
| 144 } | |
| 145 *dither = -(*dither); | |
| 146 } | |
| 147 /* Normalized short-term autocovariance coefficient at unit sample delay */ | |
| 148 *rc1 /= max(e0ap, 1.0f); | |
| 149 /* Ratio of the energy of the first difference signal (6 dB/oct preemphasis)*/ | |
| 150 /* to the energy of the full band signal */ | |
| 151 /* Computing MAX */ | |
| 152 r1 = ap_rms*2.0f; | |
| 153 *qs = e_pre/max(r1, 1.0f); | |
| 154 /* aR_b is the product of the forward and reverse prediction gains, */ | |
| 155 /* looking backward in time (the causal case). */ | |
| 156 *ar_b = r_b/max(e_b, 1.0f)*(r_b/max(e_0, 1.0f)); | |
| 157 /* aR_f is the same as aR_b, but looking forward in time (non causal case).*/ | |
| 158 *ar_f = r_f/max(e_f, 1.0f)*(r_f/max(e_0, 1.0f)); | |
| 159 /* Normalize ZC, LBE, and FBE to old fixed window length of 180. */ | |
| 160 /* (The fraction 90/VLEN has a range of 0.58 to 1) */ | |
| 161 r2 = (float) (*zc << 1); | |
| 162 *zc = lfastrintf(r2*(90.0f/vlen)); | |
| 163 r1 = lp_rms/4*(90.0f/vlen); | |
| 164 *lbe = min(lfastrintf(r1), 32767); | |
| 165 r1 = ap_rms/4*(90.0f/vlen); | |
| 166 *fbe = min(lfastrintf(r1), 32767); | |
| 167 } | |
| 168 /*- End of function --------------------------------------------------------*/ | |
| 169 | |
| 170 /* Voicing detection makes voicing decisions for each half */ | |
| 171 /* frame of input speech. Tentative voicing decisions are made two frames*/ | |
| 172 /* in the future (2F) for each half frame. These decisions are carried */ | |
| 173 /* through one frame in the future (1F) to the present (P) frame where */ | |
| 174 /* they are examined and smoothed, resulting in the final voicing */ | |
| 175 /* decisions for each half frame. */ | |
| 176 | |
| 177 /* The voicing parameter (signal measurement) column vector (VALUE) */ | |
| 178 /* is based on a rectangular window of speech samples determined by the */ | |
| 179 /* window placement algorithm. The voicing parameter vector contains the*/ | |
| 180 /* AMDF windowed maximum-to-minimum ratio, the zero crossing rate, energy*/ | |
| 181 /* measures, reflection coefficients, and prediction gains. The voicing */ | |
| 182 /* window is placed to avoid contamination of the voicing parameter vector*/ | |
| 183 /* with speech onsets. */ | |
| 184 | |
| 185 /* The input signal is then classified as unvoiced (including */ | |
| 186 /* silence) or voiced. This decision is made by a linear discriminant */ | |
| 187 /* function consisting of a dot product of the voicing decision */ | |
| 188 /* coefficient (VDC) row vector with the measurement column vector */ | |
| 189 /* (VALUE). The VDC vector is 2-dimensional, each row vector is optimized*/ | |
| 190 /* for a particular signal-to-noise ratio (SNR). So, before the dot */ | |
| 191 /* product is performed, the SNR is estimated to select the appropriate */ | |
| 192 /* VDC vector. */ | |
| 193 | |
| 194 /* The smoothing algorithm is a modified median smoother. The */ | |
| 195 /* voicing discriminant function is used by the smoother to determine how*/ | |
| 196 /* strongly voiced or unvoiced a signal is. The smoothing is further */ | |
| 197 /* modified if a speech onset and a voicing decision transition occur */ | |
| 198 /* within one half frame. In this case, the voicing decision transition */ | |
| 199 /* is extended to the speech onset. For transmission purposes, there are*/ | |
| 200 /* constraints on the duration and transition of voicing decisions. The */ | |
| 201 /* smoother takes these constraints into account. */ | |
| 202 | |
| 203 /* Finally, the energy estimates are updated along with the dither */ | |
| 204 /* threshold used to calculate the zero crossing rate (ZC). */ | |
| 205 | |
| 206 void lpc10_voicing(lpc10_encode_state_t *s, | |
| 207 int32_t vwin[], | |
| 208 float *inbuf, | |
| 209 float *lpbuf, | |
| 210 const int32_t buflim[], | |
| 211 int32_t half, | |
| 212 float *minamd, | |
| 213 float *maxamd, | |
| 214 int32_t *mintau, | |
| 215 float ivrc[], | |
| 216 int32_t obound[]) | |
| 217 { | |
| 218 static const float vdc[100] = | |
| 219 { | |
| 220 0.0f, 1714.0f, -110.0f, 334.0f, -4096.0f, -654.0f, 3752.0f, 3769.0f, 0.0f, 1181.0f, | |
| 221 0.0f, 874.0f, -97.0f, 300.0f, -4096.0f, -1021.0f, 2451.0f, 2527.0f, 0.0f, -500.0f, | |
| 222 0.0f, 510.0f, -70.0f, 250.0f, -4096.0f, -1270.0f, 2194.0f, 2491.0f, 0.0f, -1500.0f, | |
| 223 0.0f, 500.0f, -10.0f, 200.0f, -4096.0f, -1300.0f, 2.0e3f, 2.0e3f, 0.0f, -2.0e3f, | |
| 224 0.0f, 500.0f, 0.0f, 0.0f, -4096.0f, -1300.0f, 2.0e3f, 2.0e3f, 0.0f, -2500.0f, | |
| 225 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | |
| 226 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | |
| 227 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | |
| 228 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | |
| 229 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f | |
| 230 }; | |
| 231 static const int nvdcl = 5; | |
| 232 static const float vdcl[10] = | |
| 233 { | |
| 234 600.0f, 450.0f, 300.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f | |
| 235 }; | |
| 236 | |
| 237 int32_t inbuf_offset; | |
| 238 int32_t lpbuf_offset; | |
| 239 int32_t i1; | |
| 240 float r1; | |
| 241 float r2; | |
| 242 float ar_b; | |
| 243 float ar_f; | |
| 244 int32_t snrl; | |
| 245 int32_t i; | |
| 246 float value[9]; | |
| 247 int32_t zc; | |
| 248 int ot; | |
| 249 float qs; | |
| 250 int32_t vstate; | |
| 251 float rc1; | |
| 252 int32_t fbe; | |
| 253 int32_t lbe; | |
| 254 float snr2; | |
| 255 | |
| 256 #if (_MSC_VER >= 1400) | |
| 257 __analysis_assume(half >= 0 && half < 2); | |
| 258 #endif | |
| 259 inbuf_offset = 0; | |
| 260 lpbuf_offset = 0; | |
| 261 if (inbuf) | |
| 262 { | |
| 263 inbuf_offset = buflim[0]; | |
| 264 inbuf -= inbuf_offset; | |
| 265 } | |
| 266 if (lpbuf) | |
| 267 { | |
| 268 lpbuf_offset = buflim[2]; | |
| 269 lpbuf -= lpbuf_offset; | |
| 270 } | |
| 271 | |
| 272 /* Voicing Decision Parameter vector (* denotes zero coefficient): */ | |
| 273 | |
| 274 /* * MAXMIN */ | |
| 275 /* LBE/LBVE */ | |
| 276 /* ZC */ | |
| 277 /* RC1 */ | |
| 278 /* QS */ | |
| 279 /* IVRC2 */ | |
| 280 /* aR_B */ | |
| 281 /* aR_F */ | |
| 282 /* * LOG(LBE/LBVE) */ | |
| 283 /* Define 2-D voicing decision coefficient vector according to the voicing */ | |
| 284 /* parameter order above. Each row (VDC vector) is optimized for a specific */ | |
| 285 /* SNR. The last element of the vector is the constant. */ | |
| 286 /* E ZC RC1 Qs IVRC2 aRb aRf c */ | |
| 287 | |
| 288 /* The VOICE array contains the result of the linear discriminant function*/ | |
| 289 /* (analog values). The VOIBUF array contains the hard-limited binary */ | |
| 290 /* voicing decisions. The VOICE and VOIBUF arrays, according to FORTRAN */ | |
| 291 /* memory allocation, are addressed as: */ | |
| 292 | |
| 293 /* (half-frame number, future-frame number) */ | |
| 294 | |
| 295 /* | Past | Present | Future1 | Future2 | */ | |
| 296 /* | 1,0 | 2,0 | 1,1 | 2,1 | 1,2 | 2,2 | 1,3 | 2,3 | ---> time */ | |
| 297 | |
| 298 /* Update linear discriminant function history each frame: */ | |
| 299 if (half == 0) | |
| 300 { | |
| 301 s->voice[0][0] = s->voice[1][0]; | |
| 302 s->voice[0][1] = s->voice[1][1]; | |
| 303 s->voice[1][0] = s->voice[2][0]; | |
| 304 s->voice[1][1] = s->voice[2][1]; | |
| 305 s->maxmin = *maxamd / max(*minamd, 1.0f); | |
| 306 } | |
| 307 /* Calculate voicing parameters twice per frame */ | |
| 308 vparms(vwin, | |
| 309 &inbuf[inbuf_offset], | |
| 310 &lpbuf[lpbuf_offset], | |
| 311 buflim, | |
| 312 half, | |
| 313 &s->dither, | |
| 314 mintau, | |
| 315 &zc, | |
| 316 &lbe, | |
| 317 &fbe, | |
| 318 &qs, | |
| 319 &rc1, | |
| 320 &ar_b, | |
| 321 &ar_f); | |
| 322 /* Estimate signal-to-noise ratio to select the appropriate VDC vector. */ | |
| 323 /* The SNR is estimated as the running average of the ratio of the */ | |
| 324 /* running average full-band voiced energy to the running average */ | |
| 325 /* full-band unvoiced energy. SNR filter has gain of 63. */ | |
| 326 r1 = (s->snr + s->fbve/(float) max(s->fbue, 1))*63/64.0f; | |
| 327 s->snr = (float) lfastrintf(r1); | |
| 328 snr2 = s->snr*s->fbue/max(s->lbue, 1); | |
| 329 /* Quantize SNR to SNRL according to VDCL thresholds. */ | |
| 330 i1 = nvdcl - 1; | |
| 331 for (snrl = 0; snrl < i1; snrl++) | |
| 332 { | |
| 333 if (snr2 > vdcl[snrl]) | |
| 334 break; | |
| 335 } | |
| 336 /* (Note: SNRL = NVDCL here) */ | |
| 337 /* Linear discriminant voicing parameters: */ | |
| 338 value[0] = s->maxmin; | |
| 339 value[1] = (float) lbe/max(s->lbve, 1); | |
| 340 value[2] = (float) zc; | |
| 341 value[3] = rc1; | |
| 342 value[4] = qs; | |
| 343 value[5] = ivrc[1]; | |
| 344 value[6] = ar_b; | |
| 345 value[7] = ar_f; | |
| 346 /* Evaluation of linear discriminant function: */ | |
| 347 s->voice[2][half] = vdc[snrl*10 + 9]; | |
| 348 for (i = 0; i < 8; i++) | |
| 349 s->voice[2][half] += vdc[snrl*10 + i]*value[i]; | |
| 350 /* Classify as voiced if discriminant > 0, otherwise unvoiced */ | |
| 351 /* Voicing decision for current half-frame: 1 = Voiced; 0 = Unvoiced */ | |
| 352 s->voibuf[3][half] = (s->voice[2][half] > 0.0f) ? 1 : 0; | |
| 353 /* Skip voicing decision smoothing in first half-frame: */ | |
| 354 /* Give a value to VSTATE, so that trace statements below will print */ | |
| 355 /* a consistent value from one call to the next when HALF .EQ. 1. */ | |
| 356 /* The value of VSTATE is not used for any other purpose when this is */ | |
| 357 /* true. */ | |
| 358 vstate = -1; | |
| 359 if (half != 0) | |
| 360 { | |
| 361 /* Voicing decision smoothing rules (override of linear combination): */ | |
| 362 | |
| 363 /* Unvoiced half-frames: At least two in a row. */ | |
| 364 /* -------------------- */ | |
| 365 | |
| 366 /* Voiced half-frames: At least two in a row in one frame. */ | |
| 367 /* ------------------- Otherwise at least three in a row. */ | |
| 368 /* (Due to the way transition frames are encoded) */ | |
| 369 | |
| 370 /* In many cases, the discriminant function determines how to smooth. */ | |
| 371 /* In the following chart, the decisions marked with a * may be overridden. */ | |
| 372 | |
| 373 /* Voicing override of transitions at onsets: */ | |
| 374 /* If a V/UV or UV/V voicing decision transition occurs within one-half */ | |
| 375 /* frame of an onset bounding a voicing window, then the transition is */ | |
| 376 /* moved to occur at the onset. */ | |
| 377 | |
| 378 /* P 1F */ | |
| 379 /* ----- ----- */ | |
| 380 /* 0 0 0 0 */ | |
| 381 /* 0 0 0* 1 (If there is an onset there) */ | |
| 382 /* 0 0 1* 0* (Based on 2F and discriminant distance) */ | |
| 383 /* 0 0 1 1 */ | |
| 384 /* 0 1* 0 0 (Always) */ | |
| 385 /* 0 1* 0* 1 (Based on discriminant distance) */ | |
| 386 /* 0* 1 1 0* (Based on past, 2F, and discriminant distance) */ | |
| 387 /* 0 1* 1 1 (If there is an onset there) */ | |
| 388 /* 1 0* 0 0 (If there is an onset there) */ | |
| 389 /* 1 0 0 1 */ | |
| 390 /* 1 0* 1* 0 (Based on discriminant distance) */ | |
| 391 /* 1 0* 1 1 (Always) */ | |
| 392 /* 1 1 0 0 */ | |
| 393 /* 1 1 0* 1* (Based on 2F and discriminant distance) */ | |
| 394 /* 1 1 1* 0 (If there is an onset there) */ | |
| 395 /* 1 1 1 1 */ | |
| 396 | |
| 397 /* Determine if there is an onset transition between P and 1F. */ | |
| 398 /* OT (Onset Transition) is true if there is an onset between */ | |
| 399 /* P and 1F but not after 1F. */ | |
| 400 ot = ((obound[0] & 2) != 0 || obound[1] == 1) && (obound[2] & 1) == 0; | |
| 401 /* Multi-way dispatch on voicing decision history: */ | |
| 402 vstate = (s->voibuf[1][0] << 3) + (s->voibuf[1][1] << 2) + (s->voibuf[2][0] << 1) + s->voibuf[2][1]; | |
| 403 switch (vstate + 1) | |
| 404 { | |
| 405 case 2: | |
| 406 if (ot && s->voibuf[3][0] == 1) | |
| 407 s->voibuf[2][0] = 1; | |
| 408 break; | |
| 409 case 3: | |
| 410 if (s->voibuf[3][0] == 0 || s->voice[1][0] < -s->voice[1][1]) | |
| 411 s->voibuf[2][0] = 0; | |
| 412 else | |
| 413 s->voibuf[2][1] = 1; | |
| 414 break; | |
| 415 case 5: | |
| 416 s->voibuf[1][1] = 0; | |
| 417 break; | |
| 418 case 6: | |
| 419 if (s->voice[0][1] < -s->voice[1][0]) | |
| 420 s->voibuf[1][1] = 0; | |
| 421 else | |
| 422 s->voibuf[2][0] = 1; | |
| 423 break; | |
| 424 case 7: | |
| 425 if (s->voibuf[0][0] == 1 || s->voibuf[3][0] == 1 || s->voice[1][1] > s->voice[0][0]) | |
| 426 s->voibuf[2][1] = 1; | |
| 427 else | |
| 428 s->voibuf[1][0] = 1; | |
| 429 break; | |
| 430 case 8: | |
| 431 if (ot) | |
| 432 s->voibuf[1][1] = 0; | |
| 433 break; | |
| 434 case 9: | |
| 435 if (ot) | |
| 436 s->voibuf[1][1] = 1; | |
| 437 break; | |
| 438 case 11: | |
| 439 if (s->voice[1][9] < -s->voice[0][1]) | |
| 440 s->voibuf[2][0] = 0; | |
| 441 else | |
| 442 s->voibuf[1][1] = 1; | |
| 443 break; | |
| 444 case 12: | |
| 445 s->voibuf[1][1] = 1; | |
| 446 break; | |
| 447 case 14: | |
| 448 if (s->voibuf[3][0] == 0 && s->voice[1][1] < -s->voice[1][0]) | |
| 449 s->voibuf[2][1] = 0; | |
| 450 else | |
| 451 s->voibuf[2][0] = 1; | |
| 452 break; | |
| 453 case 15: | |
| 454 if (ot && s->voibuf[3][0] == 0) | |
| 455 s->voibuf[2][0] = 0; | |
| 456 break; | |
| 457 } | |
| 458 } | |
| 459 /* During unvoiced half-frames, update the low band and full band unvoiced*/ | |
| 460 /* energy estimates (LBUE and FBUE) and also the zero crossing */ | |
| 461 /* threshold (DITHER). (The input to the unvoiced energy filters is */ | |
| 462 /* restricted to be less than 10dB above the previous inputs of the */ | |
| 463 /* filters.) */ | |
| 464 /* During voiced half-frames, update the low-pass (LBVE) and all-pass */ | |
| 465 /* (FBVE) voiced energy estimates. */ | |
| 466 if (s->voibuf[3][half] == 0) | |
| 467 { | |
| 468 r1 = (s->sfbue*63 + (min(fbe, s->ofbue*3) << 3))/64.0f; | |
| 469 s->sfbue = lfastrintf(r1); | |
| 470 s->fbue = s->sfbue/8; | |
| 471 s->ofbue = fbe; | |
| 472 r1 = (s->slbue*63 + (min(lbe, s->olbue*3) << 3))/64.0f; | |
| 473 s->slbue = lfastrintf(r1); | |
| 474 s->lbue = s->slbue/8; | |
| 475 s->olbue = lbe; | |
| 476 } | |
| 477 else | |
| 478 { | |
| 479 s->lbve = lfastrintf((s->lbve*63 + lbe)/64.0f); | |
| 480 s->fbve = lfastrintf((s->fbve*63 + fbe)/64.0f); | |
| 481 } | |
| 482 /* Set dither threshold to yield proper zero crossing rates in the */ | |
| 483 /* presence of low frequency noise and low level signal input. */ | |
| 484 /* NOTE: The divisor is a function of REF, the expected energies. */ | |
| 485 /* Computing MIN */ | |
| 486 /* Computing MAX */ | |
| 487 r2 = sqrtf((float) (s->lbue*s->lbve))*64/3000; | |
| 488 r1 = max(r2, 1.0f); | |
| 489 s->dither = min(r1, 20.0f); | |
| 490 /* Voicing decisions are returned in VOIBUF. */ | |
| 491 } | |
| 492 /*- End of function --------------------------------------------------------*/ | |
| 493 /*- End of file ------------------------------------------------------------*/ | 
