comparison spandsp-0.0.6pre17/src/spandsp/g711.h @ 4:26cd8f1ef0b1

import spandsp-0.0.6pre17
author Peter Meerwald <pmeerw@cosy.sbg.ac.at>
date Fri, 25 Jun 2010 15:50:58 +0200
parents
children
comparison
equal deleted inserted replaced
3:c6c5a16ce2f2 4:26cd8f1ef0b1
1 /*
2 * SpanDSP - a series of DSP components for telephony
3 *
4 * g711.h - In line A-law and u-law conversion routines
5 *
6 * Written by Steve Underwood <steveu@coppice.org>
7 *
8 * Copyright (C) 2001 Steve Underwood
9 *
10 * All rights reserved.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Lesser General Public License version 2.1,
14 * as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * $Id: g711.h,v 1.19 2009/04/12 09:12:10 steveu Exp $
26 */
27
28 /*! \file */
29
30 /*! \page g711_page A-law and mu-law handling
31 Lookup tables for A-law and u-law look attractive, until you consider the impact
32 on the CPU cache. If it causes a substantial area of your processor cache to get
33 hit too often, cache sloshing will severely slow things down. The main reason
34 these routines are slow in C, is the lack of direct access to the CPU's "find
35 the first 1" instruction. A little in-line assembler fixes that, and the
36 conversion routines can be faster than lookup tables, in most real world usage.
37 A "find the first 1" instruction is available on most modern CPUs, and is a
38 much underused feature.
39
40 If an assembly language method of bit searching is not available, these routines
41 revert to a method that can be a little slow, so the cache thrashing might not
42 seem so bad :(
43
44 Feel free to submit patches to add fast "find the first 1" support for your own
45 favourite processor.
46
47 Look up tables are used for transcoding between A-law and u-law, since it is
48 difficult to achieve the precise transcoding procedure laid down in the G.711
49 specification by other means.
50 */
51
52 #if !defined(_SPANDSP_G711_H_)
53 #define _SPANDSP_G711_H_
54
55 /* The usual values to use on idle channels, to emulate silence */
56 /*! Idle value for A-law channels */
57 #define G711_ALAW_IDLE_OCTET 0x5D
58 /*! Idle value for u-law channels */
59 #define G711_ULAW_IDLE_OCTET 0xFF
60
61 enum
62 {
63 G711_ALAW = 0,
64 G711_ULAW
65 };
66
67 /*!
68 G.711 state
69 */
70 typedef struct g711_state_s g711_state_t;
71
72 #if defined(__cplusplus)
73 extern "C"
74 {
75 #endif
76
77 /* N.B. It is tempting to use look-up tables for A-law and u-law conversion.
78 * However, you should consider the cache footprint.
79 *
80 * A 64K byte table for linear to x-law and a 512 byte table for x-law to
81 * linear sound like peanuts these days, and shouldn't an array lookup be
82 * real fast? No! When the cache sloshes as badly as this one will, a tight
83 * calculation may be better. The messiest part is normally finding the
84 * segment, but a little inline assembly can fix that on an i386, x86_64 and
85 * many other modern processors.
86 */
87
88 /*
89 * Mu-law is basically as follows:
90 *
91 * Biased Linear Input Code Compressed Code
92 * ------------------------ ---------------
93 * 00000001wxyza 000wxyz
94 * 0000001wxyzab 001wxyz
95 * 000001wxyzabc 010wxyz
96 * 00001wxyzabcd 011wxyz
97 * 0001wxyzabcde 100wxyz
98 * 001wxyzabcdef 101wxyz
99 * 01wxyzabcdefg 110wxyz
100 * 1wxyzabcdefgh 111wxyz
101 *
102 * Each biased linear code has a leading 1 which identifies the segment
103 * number. The value of the segment number is equal to 7 minus the number
104 * of leading 0's. The quantization interval is directly available as the
105 * four bits wxyz. * The trailing bits (a - h) are ignored.
106 *
107 * Ordinarily the complement of the resulting code word is used for
108 * transmission, and so the code word is complemented before it is returned.
109 *
110 * For further information see John C. Bellamy's Digital Telephony, 1982,
111 * John Wiley & Sons, pps 98-111 and 472-476.
112 */
113
114 /* Enable the trap as per the MIL-STD */
115 //#define ULAW_ZEROTRAP
116 /*! Bias for u-law encoding from linear. */
117 #define ULAW_BIAS 0x84
118
119 /*! \brief Encode a linear sample to u-law
120 \param linear The sample to encode.
121 \return The u-law value.
122 */
123 static __inline__ uint8_t linear_to_ulaw(int linear)
124 {
125 uint8_t u_val;
126 int mask;
127 int seg;
128
129 /* Get the sign and the magnitude of the value. */
130 if (linear >= 0)
131 {
132 linear = ULAW_BIAS + linear;
133 mask = 0xFF;
134 }
135 else
136 {
137 linear = ULAW_BIAS - linear;
138 mask = 0x7F;
139 }
140
141 seg = top_bit(linear | 0xFF) - 7;
142
143 /*
144 * Combine the sign, segment, quantization bits,
145 * and complement the code word.
146 */
147 if (seg >= 8)
148 u_val = (uint8_t) (0x7F ^ mask);
149 else
150 u_val = (uint8_t) (((seg << 4) | ((linear >> (seg + 3)) & 0xF)) ^ mask);
151 #ifdef ULAW_ZEROTRAP
152 /* Optional ITU trap */
153 if (u_val == 0)
154 u_val = 0x02;
155 #endif
156 return u_val;
157 }
158 /*- End of function --------------------------------------------------------*/
159
160 /*! \brief Decode an u-law sample to a linear value.
161 \param ulaw The u-law sample to decode.
162 \return The linear value.
163 */
164 static __inline__ int16_t ulaw_to_linear(uint8_t ulaw)
165 {
166 int t;
167
168 /* Complement to obtain normal u-law value. */
169 ulaw = ~ulaw;
170 /*
171 * Extract and bias the quantization bits. Then
172 * shift up by the segment number and subtract out the bias.
173 */
174 t = (((ulaw & 0x0F) << 3) + ULAW_BIAS) << (((int) ulaw & 0x70) >> 4);
175 return (int16_t) ((ulaw & 0x80) ? (ULAW_BIAS - t) : (t - ULAW_BIAS));
176 }
177 /*- End of function --------------------------------------------------------*/
178
179 /*
180 * A-law is basically as follows:
181 *
182 * Linear Input Code Compressed Code
183 * ----------------- ---------------
184 * 0000000wxyza 000wxyz
185 * 0000001wxyza 001wxyz
186 * 000001wxyzab 010wxyz
187 * 00001wxyzabc 011wxyz
188 * 0001wxyzabcd 100wxyz
189 * 001wxyzabcde 101wxyz
190 * 01wxyzabcdef 110wxyz
191 * 1wxyzabcdefg 111wxyz
192 *
193 * For further information see John C. Bellamy's Digital Telephony, 1982,
194 * John Wiley & Sons, pps 98-111 and 472-476.
195 */
196
197 /*! The A-law alternate mark inversion mask */
198 #define ALAW_AMI_MASK 0x55
199
200 /*! \brief Encode a linear sample to A-law
201 \param linear The sample to encode.
202 \return The A-law value.
203 */
204 static __inline__ uint8_t linear_to_alaw(int linear)
205 {
206 int mask;
207 int seg;
208
209 if (linear >= 0)
210 {
211 /* Sign (bit 7) bit = 1 */
212 mask = ALAW_AMI_MASK | 0x80;
213 }
214 else
215 {
216 /* Sign (bit 7) bit = 0 */
217 mask = ALAW_AMI_MASK;
218 linear = -linear - 1;
219 }
220
221 /* Convert the scaled magnitude to segment number. */
222 seg = top_bit(linear | 0xFF) - 7;
223 if (seg >= 8)
224 {
225 if (linear >= 0)
226 {
227 /* Out of range. Return maximum value. */
228 return (uint8_t) (0x7F ^ mask);
229 }
230 /* We must be just a tiny step below zero */
231 return (uint8_t) (0x00 ^ mask);
232 }
233 /* Combine the sign, segment, and quantization bits. */
234 return (uint8_t) (((seg << 4) | ((linear >> ((seg) ? (seg + 3) : 4)) & 0x0F)) ^ mask);
235 }
236 /*- End of function --------------------------------------------------------*/
237
238 /*! \brief Decode an A-law sample to a linear value.
239 \param alaw The A-law sample to decode.
240 \return The linear value.
241 */
242 static __inline__ int16_t alaw_to_linear(uint8_t alaw)
243 {
244 int i;
245 int seg;
246
247 alaw ^= ALAW_AMI_MASK;
248 i = ((alaw & 0x0F) << 4);
249 seg = (((int) alaw & 0x70) >> 4);
250 if (seg)
251 i = (i + 0x108) << (seg - 1);
252 else
253 i += 8;
254 return (int16_t) ((alaw & 0x80) ? i : -i);
255 }
256 /*- End of function --------------------------------------------------------*/
257
258 /*! \brief Transcode from A-law to u-law, using the procedure defined in G.711.
259 \param alaw The A-law sample to transcode.
260 \return The best matching u-law value.
261 */
262 SPAN_DECLARE(uint8_t) alaw_to_ulaw(uint8_t alaw);
263
264 /*! \brief Transcode from u-law to A-law, using the procedure defined in G.711.
265 \param ulaw The u-law sample to transcode.
266 \return The best matching A-law value.
267 */
268 SPAN_DECLARE(uint8_t) ulaw_to_alaw(uint8_t ulaw);
269
270 /*! \brief Decode from u-law or A-law to linear.
271 \param s The G.711 context.
272 \param amp The linear audio buffer.
273 \param g711_data The G.711 data.
274 \param g711_bytes The number of G.711 samples to decode.
275 \return The number of samples of linear audio produced.
276 */
277 SPAN_DECLARE(int) g711_decode(g711_state_t *s,
278 int16_t amp[],
279 const uint8_t g711_data[],
280 int g711_bytes);
281
282 /*! \brief Encode from linear to u-law or A-law.
283 \param s The G.711 context.
284 \param g711_data The G.711 data.
285 \param amp The linear audio buffer.
286 \param len The number of samples to encode.
287 \return The number of G.711 samples produced.
288 */
289 SPAN_DECLARE(int) g711_encode(g711_state_t *s,
290 uint8_t g711_data[],
291 const int16_t amp[],
292 int len);
293
294 /*! \brief Transcode between u-law and A-law.
295 \param s The G.711 context.
296 \param g711_out The resulting G.711 data.
297 \param g711_in The original G.711 data.
298 \param g711_bytes The number of G.711 samples to transcode.
299 \return The number of G.711 samples produced.
300 */
301 SPAN_DECLARE(int) g711_transcode(g711_state_t *s,
302 uint8_t g711_out[],
303 const uint8_t g711_in[],
304 int g711_bytes);
305
306 /*! Initialise a G.711 encode or decode context.
307 \param s The G.711 context.
308 \param mode The G.711 mode.
309 \return A pointer to the G.711 context, or NULL for error. */
310 SPAN_DECLARE(g711_state_t *) g711_init(g711_state_t *s, int mode);
311
312 /*! Release a G.711 encode or decode context.
313 \param s The G.711 context.
314 \return 0 for OK. */
315 SPAN_DECLARE(int) g711_release(g711_state_t *s);
316
317 /*! Free a G.711 encode or decode context.
318 \param s The G.711 context.
319 \return 0 for OK. */
320 SPAN_DECLARE(int) g711_free(g711_state_t *s);
321
322 #if defined(__cplusplus)
323 }
324 #endif
325
326 #endif
327 /*- End of file ------------------------------------------------------------*/

Repositories maintained by Peter Meerwald, pmeerw@pmeerw.net.