Mercurial > hg > audiostuff
comparison spandsp-0.0.6pre17/src/v22bis_tx.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
| author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
|---|---|
| date | Fri, 25 Jun 2010 15:50:58 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 3:c6c5a16ce2f2 | 4:26cd8f1ef0b1 |
|---|---|
| 1 /* | |
| 2 * SpanDSP - a series of DSP components for telephony | |
| 3 * | |
| 4 * v22bis_tx.c - ITU V.22bis modem transmit part | |
| 5 * | |
| 6 * Written by Steve Underwood <steveu@coppice.org> | |
| 7 * | |
| 8 * Copyright (C) 2004 Steve Underwood | |
| 9 * | |
| 10 * All rights reserved. | |
| 11 * | |
| 12 * This program is free software; you can redistribute it and/or modify | |
| 13 * it under the terms of the GNU Lesser General Public License version 2.1, | |
| 14 * as published by the Free Software Foundation. | |
| 15 * | |
| 16 * This program is distributed in the hope that it will be useful, | |
| 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 19 * GNU Lesser General Public License for more details. | |
| 20 * | |
| 21 * You should have received a copy of the GNU Lesser General Public | |
| 22 * License along with this program; if not, write to the Free Software | |
| 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
| 24 * | |
| 25 * $Id: v22bis_tx.c,v 1.64 2009/11/04 15:52:06 steveu Exp $ | |
| 26 */ | |
| 27 | |
| 28 /*! \file */ | |
| 29 | |
| 30 /* THIS IS A WORK IN PROGRESS - It is basically functional, but it is not feature | |
| 31 complete, and doesn't reliably sync over the signal and noise level ranges it should! */ | |
| 32 | |
| 33 #if defined(HAVE_CONFIG_H) | |
| 34 #include "config.h" | |
| 35 #endif | |
| 36 | |
| 37 #include <stdio.h> | |
| 38 #include <inttypes.h> | |
| 39 #include <stdlib.h> | |
| 40 #include <string.h> | |
| 41 #if defined(HAVE_TGMATH_H) | |
| 42 #include <tgmath.h> | |
| 43 #endif | |
| 44 #if defined(HAVE_MATH_H) | |
| 45 #include <math.h> | |
| 46 #endif | |
| 47 #include "floating_fudge.h" | |
| 48 | |
| 49 #include "spandsp/telephony.h" | |
| 50 #include "spandsp/fast_convert.h" | |
| 51 #include "spandsp/logging.h" | |
| 52 #include "spandsp/complex.h" | |
| 53 #include "spandsp/vector_float.h" | |
| 54 #include "spandsp/complex_vector_float.h" | |
| 55 #include "spandsp/async.h" | |
| 56 #include "spandsp/dds.h" | |
| 57 #include "spandsp/power_meter.h" | |
| 58 | |
| 59 #include "spandsp/v29rx.h" | |
| 60 #include "spandsp/v22bis.h" | |
| 61 | |
| 62 #include "spandsp/private/logging.h" | |
| 63 #include "spandsp/private/v22bis.h" | |
| 64 | |
| 65 #if defined(SPANDSP_USE_FIXED_POINTx) | |
| 66 #include "v22bis_tx_fixed_rrc.h" | |
| 67 #else | |
| 68 #include "v22bis_tx_floating_rrc.h" | |
| 69 #endif | |
| 70 | |
| 71 /* Quoting from the V.22bis spec. | |
| 72 | |
| 73 6.3.1.1 Interworking at 2400 bit/s | |
| 74 | |
| 75 6.3.1.1.1 Calling modem | |
| 76 | |
| 77 a) On connection to line the calling modem shall be conditioned to receive signals | |
| 78 in the high channel at 1200 bit/s and transmit signals in the low channel at 1200 bit/s | |
| 79 in accordance with section 2.5.2.2. It shall apply an ON condition to circuit 107 in accordance | |
| 80 with Recommendation V.25. The modem shall initially remain silent. | |
| 81 | |
| 82 b) After 155 +-10 ms of unscrambled binary 1 has been detected, the modem shall remain silent | |
| 83 for a further 456 +-10 ms then transmit an unscrambled repetitive double dibit pattern of 00 | |
| 84 and 11 at 1200 bit/s for 100 +-3 ms. Following this signal the modem shall transmit scrambled | |
| 85 binary 1 at 1200 bit/s. | |
| 86 | |
| 87 c) If the modem detects scrambled binary 1 in the high channel at 1200 bit/s for 270 +-40 ms, | |
| 88 the handshake shall continue in accordance with section 6.3.1.2.1 c) and d). However, if unscrambled | |
| 89 repetitive double dibit 00 and 11 at 1200 bit/s is detected in the high channel, then at the | |
| 90 end of receipt of this signal the modem shall apply an ON condition to circuit 112. | |
| 91 | |
| 92 d) 600 +-10 ms after circuit 112 has been turned ON the modem shall begin transmitting scrambled | |
| 93 binary 1 at 2400 bit/s, and 450 +-10 ms after circuit 112 has been turned ON the receiver may | |
| 94 begin making 16-way decisions. | |
| 95 | |
| 96 e) Following transmission of scrambled binary 1 at 2400 bit/s for 200 +-10 ms, circuit 106 shall | |
| 97 be conditioned to respond to circuit 105 and the modem shall be ready to transmit data at | |
| 98 2400 bit/s. | |
| 99 | |
| 100 f) When 32 consecutive bits of scrambled binary 1 at 2400 bit/s have been detected in the high | |
| 101 channel the modem shall be ready to receive data at 2400 bit/s and shall apply an ON condition | |
| 102 to circuit 109. | |
| 103 | |
| 104 6.3.1.1.2 Answering modem | |
| 105 | |
| 106 a) On connection to line the answering modem shall be conditioned to transmit signals in the high | |
| 107 channel at 1200 bit/s in accordance with section 2.5.2.2 and receive signals in the low channel at | |
| 108 1200 bit/s. Following transmission of the answer sequence in accordance with Recommendation | |
| 109 V.25, the modem shall apply an ON condition to circuit 107 and then transmit unscrambled | |
| 110 binary 1 at 1200 bit/s. | |
| 111 | |
| 112 b) If the modem detects scrambled binary 1 or 0 in the low channel at 1200 bit/s for 270 +-40 ms, | |
| 113 the handshake shall continue in accordance with section 6.3.1.2.2 b) and c). However, if unscrambled | |
| 114 repetitive double dibit 00 and 11 at 1200 bit/s is detected in the low channel, at the end of | |
| 115 receipt of this signal the modem shall apply an ON condition to circuit 112 and then transmit | |
| 116 an unscrambled repetitive double dibit pattern of 00 and 11 at 1200 bit/s for 100 +-3 ms. | |
| 117 Following these signals the modem shall transmit scrambled binary 1 at 1200 bit/s. | |
| 118 | |
| 119 c) 600 +-10 ms after circuit 112 has been turned ON the modem shall begin transmitting scrambled | |
| 120 binary 1 at 2400 bit/s, and 450 +-10 ms after circuit 112 has been turned ON the receiver may | |
| 121 begin making 16-way decisions. | |
| 122 | |
| 123 d) Following transmission of scrambled binary 1 at 2400 bit/s for 200 +-10 ms, circuit 106 shall | |
| 124 be conditioned to respond to circuit 105 and the modem shall be ready to transmit data at | |
| 125 2400 bit/s. | |
| 126 | |
| 127 e) When 32 consecutive bits of scrambled binary 1 at 2400 bit/s have been detected in the low | |
| 128 channel the modem shall be ready to receive data at 2400 bit/s and shall apply an ON | |
| 129 condition to circuit 109. | |
| 130 | |
| 131 6.3.1.2 Interworking at 1200 bit/s | |
| 132 | |
| 133 The following handshake is identical to the Recommendation V.22 alternative A and B handshake. | |
| 134 | |
| 135 6.3.1.2.1 Calling modem | |
| 136 | |
| 137 a) On connection to line the calling modem shall be conditioned to receive signals in the high | |
| 138 channel at 1200 bit/s and transmit signals in the low channel at 1200 bit/s in accordance | |
| 139 with section 2.5.2.2. It shall apply an ON condition to circuit 107 in accordance with | |
| 140 Recommendation V.25. The modem shall initially remain silent. | |
| 141 | |
| 142 b) After 155 +-10 ms of unscrambled binary 1 has been detected, the modem shall remain silent | |
| 143 for a further 456 +-10 ms then transmit scrambled binary 1 at 1200 bit/s (a preceding V.22 bis | |
| 144 signal, as shown in Figure 7/V.22 bis, would not affect the operation of a V.22 answer modem). | |
| 145 | |
| 146 c) On detection of scrambled binary 1 in the high channel at 1200 bit/s for 270 +-40 ms the modem | |
| 147 shall be ready to receive data at 1200 bit/s and shall apply an ON condition to circuit 109 and | |
| 148 an OFF condition to circuit 112. | |
| 149 | |
| 150 d) 765 +-10 ms after circuit 109 has been turned ON, circuit 106 shall be conditioned to respond | |
| 151 to circuit 105 and the modem shall be ready to transmit data at 1200 bit/s. | |
| 152 | |
| 153 6.3.1.2.2 Answering modem | |
| 154 | |
| 155 a) On connection to line the answering modem shall be conditioned to transmit signals in the high | |
| 156 channel at 1200 bit/s in accordance with section 2.5.2.2 and receive signals in the low channel at | |
| 157 1200 bit/s. | |
| 158 | |
| 159 Following transmission of the answer sequence in accordance with V.25 the modem shall apply | |
| 160 an ON condition to circuit 107 and then transmit unscrambled binary 1 at 1200 bit/s. | |
| 161 | |
| 162 b) On detection of scrambled binary 1 or 0 in the low channel at 1200 bit/s for 270 +-40 ms the | |
| 163 modem shall apply an OFF condition to circuit 112 and shall then transmit scrambled binary 1 | |
| 164 at 1200 bit/s. | |
| 165 | |
| 166 c) After scrambled binary 1 has been transmitted at 1200 bit/s for 765 +-10 ms the modem shall be | |
| 167 ready to transmit and receive data at 1200 bit/s, shall condition circuit 106 to respond to | |
| 168 circuit 105 and shall apply an ON condition to circuit 109. | |
| 169 | |
| 170 Note - Manufacturers may wish to note that in certain countries, for national purposes, modems are | |
| 171 in service which emit an answering tone of 2225 Hz instead of unscrambled binary 1. | |
| 172 | |
| 173 | |
| 174 V.22bis to V.22bis | |
| 175 ------------------ | |
| 176 Calling party | |
| 177 S1 scrambled 1's scrambled 1's data | |
| 178 at 1200bps at 2400bps | |
| 179 |---------------------------------------------------------|XXXXXXXX|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
| 180 |<155+-10>|<456+-10>|<100+-3>| |<------600+-10------>|<---200+-10-->| | |
| 181 ^ | ^<----450+-100---->|[16 way decisions begin] | |
| 182 | | | | |
| 183 | v | | |
| 184 | |<------450+-100----->|[16 way decisions begin] | |
| 185 | |<----------600+-10-------->| | |
| 186 |<2150+-350>|<--3300+-700->|<75+-20>| |<100+-3>| |<---200+-10--> | |
| 187 |-----------|XXXXXXXXXXXXXX|--------|XXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXX|XXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
| 188 silence 2100Hz unscrambled 1's S1 scrambled 1's scrambled 1's data | |
| 189 at 1200bps at 1200bps at 2400bps | |
| 190 Answering party | |
| 191 | |
| 192 S1 = Unscrambled double dibit 00 and 11 at 1200bps | |
| 193 When the 2400bps section starts, both sides should look for 32 bits of continuous ones, as a test of integrity. | |
| 194 | |
| 195 | |
| 196 | |
| 197 | |
| 198 V.22 to V.22bis | |
| 199 --------------- | |
| 200 Calling party | |
| 201 scrambled 1's data | |
| 202 at 1200bps | |
| 203 |---------------------------------------------------------|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
| 204 |<155+-10>|<456+-10>| |<270+-40>|<--------765+-10-------->| | |
| 205 ^ | ^ | |
| 206 | | | | |
| 207 | | | | |
| 208 | | | | |
| 209 | v | | |
| 210 |<2150+-350>|<--3300+-700->|<75+-20>| |<270+-40>|<---------765+-10-------->| | |
| 211 |-----------|XXXXXXXXXXXXXX|--------|XXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
| 212 silence 2100Hz unscrambled 1's scrambled 1's data | |
| 213 at 1200bps at 1200bps | |
| 214 Answering party | |
| 215 | |
| 216 Both ends should accept unscrambled binary 1 or binary 0 as the preamble. | |
| 217 | |
| 218 | |
| 219 | |
| 220 | |
| 221 V.22bis to V.22 | |
| 222 --------------- | |
| 223 Calling party | |
| 224 S1 scrambled 1's data | |
| 225 at 1200bps | |
| 226 |---------------------------------------------------------|XXXXXXXX|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
| 227 |<155+-10>|<456+-10>|<100+-3>| |<-270+-40-><------765+-10------>| | |
| 228 ^ | ^ | |
| 229 | | | | |
| 230 | v | | |
| 231 | | | |
| 232 | | | |
| 233 |<2150+-350>|<--3300+-700->|<75+-20>| |<-270+-40->|<------765+-10----->| | |
| 234 |-----------|XXXXXXXXXXXXXX|--------|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
| 235 silence 2100Hz unscrambled 1's scrambled 1's data | |
| 236 at 1200bps at 1200bps | |
| 237 Answering party | |
| 238 | |
| 239 Both ends should accept unscrambled binary 1 or binary 0 as the preamble. | |
| 240 */ | |
| 241 | |
| 242 #define ms_to_symbols(t) (((t)*600)/1000) | |
| 243 | |
| 244 static const int phase_steps[4] = | |
| 245 { | |
| 246 1, 0, 2, 3 | |
| 247 }; | |
| 248 | |
| 249 const complexf_t v22bis_constellation[16] = | |
| 250 { | |
| 251 { 1.0f, 1.0f}, | |
| 252 { 3.0f, 1.0f}, /* 1200bps 00 */ | |
| 253 { 1.0f, 3.0f}, | |
| 254 { 3.0f, 3.0f}, | |
| 255 {-1.0f, 1.0f}, | |
| 256 {-1.0f, 3.0f}, /* 1200bps 01 */ | |
| 257 {-3.0f, 1.0f}, | |
| 258 {-3.0f, 3.0f}, | |
| 259 {-1.0f, -1.0f}, | |
| 260 {-3.0f, -1.0f}, /* 1200bps 10 */ | |
| 261 {-1.0f, -3.0f}, | |
| 262 {-3.0f, -3.0f}, | |
| 263 { 1.0f, -1.0f}, | |
| 264 { 1.0f, -3.0f}, /* 1200bps 11 */ | |
| 265 { 3.0f, -1.0f}, | |
| 266 { 3.0f, -3.0f} | |
| 267 }; | |
| 268 | |
| 269 static int fake_get_bit(void *user_data) | |
| 270 { | |
| 271 return 1; | |
| 272 } | |
| 273 /*- End of function --------------------------------------------------------*/ | |
| 274 | |
| 275 static __inline__ int scramble(v22bis_state_t *s, int bit) | |
| 276 { | |
| 277 int out_bit; | |
| 278 | |
| 279 if (s->tx.scrambler_pattern_count >= 64) | |
| 280 { | |
| 281 bit ^= 1; | |
| 282 s->tx.scrambler_pattern_count = 0; | |
| 283 } | |
| 284 out_bit = (bit ^ (s->tx.scramble_reg >> 13) ^ (s->tx.scramble_reg >> 16)) & 1; | |
| 285 s->tx.scramble_reg = (s->tx.scramble_reg << 1) | out_bit; | |
| 286 | |
| 287 if (out_bit == 1) | |
| 288 s->tx.scrambler_pattern_count++; | |
| 289 else | |
| 290 s->tx.scrambler_pattern_count = 0; | |
| 291 return out_bit; | |
| 292 } | |
| 293 /*- End of function --------------------------------------------------------*/ | |
| 294 | |
| 295 static __inline__ int get_scrambled_bit(v22bis_state_t *s) | |
| 296 { | |
| 297 int bit; | |
| 298 | |
| 299 if ((bit = s->tx.current_get_bit(s->get_bit_user_data)) == SIG_STATUS_END_OF_DATA) | |
| 300 { | |
| 301 /* Fill out this symbol with ones, and prepare to send | |
| 302 the rest of the shutdown sequence. */ | |
| 303 s->tx.current_get_bit = fake_get_bit; | |
| 304 s->tx.shutdown = 1; | |
| 305 bit = 1; | |
| 306 } | |
| 307 return scramble(s, bit); | |
| 308 } | |
| 309 /*- End of function --------------------------------------------------------*/ | |
| 310 | |
| 311 static complexf_t training_get(v22bis_state_t *s) | |
| 312 { | |
| 313 complexf_t z; | |
| 314 int bits; | |
| 315 | |
| 316 /* V.22bis training sequence */ | |
| 317 switch (s->tx.training) | |
| 318 { | |
| 319 case V22BIS_TX_TRAINING_STAGE_INITIAL_TIMED_SILENCE: | |
| 320 /* The answerer waits 75ms, then sends unscrambled ones */ | |
| 321 if (++s->tx.training_count >= ms_to_symbols(75)) | |
| 322 { | |
| 323 /* Initial 75ms of silence is over */ | |
| 324 span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting U11 1200\n"); | |
| 325 s->tx.training_count = 0; | |
| 326 s->tx.training = V22BIS_TX_TRAINING_STAGE_U11; | |
| 327 } | |
| 328 /* Fall through */ | |
| 329 case V22BIS_TX_TRAINING_STAGE_INITIAL_SILENCE: | |
| 330 /* Silence */ | |
| 331 s->tx.constellation_state = 0; | |
| 332 z = complex_setf(0.0f, 0.0f); | |
| 333 break; | |
| 334 case V22BIS_TX_TRAINING_STAGE_U11: | |
| 335 /* Send continuous unscrambled ones at 1200bps (i.e. 270 degree phase steps). */ | |
| 336 /* Only the answering modem sends unscrambled ones. It is the first thing exchanged between the modems. */ | |
| 337 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[3]) & 3; | |
| 338 z = v22bis_constellation[(s->tx.constellation_state << 2) | 0x01]; | |
| 339 break; | |
| 340 case V22BIS_TX_TRAINING_STAGE_U0011: | |
| 341 /* Continuous unscrambled double dibit 00 11 at 1200bps. This is termed the S1 segment in | |
| 342 the V.22bis spec. It is only sent to request or accept 2400bps mode, and lasts 100+-3ms. After this | |
| 343 timed burst, we unconditionally change to sending scrambled ones at 1200bps. */ | |
| 344 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[3*(s->tx.training_count & 1)]) & 3; | |
| 345 z = v22bis_constellation[(s->tx.constellation_state << 2) | 0x01]; | |
| 346 if (++s->tx.training_count >= ms_to_symbols(100)) | |
| 347 { | |
| 348 span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting S11 after U0011\n"); | |
| 349 if (s->calling_party) | |
| 350 { | |
| 351 s->tx.training_count = 0; | |
| 352 s->tx.training = V22BIS_TX_TRAINING_STAGE_S11; | |
| 353 } | |
| 354 else | |
| 355 { | |
| 356 s->tx.training_count = ms_to_symbols(756 - (600 - 100)); | |
| 357 s->tx.training = V22BIS_TX_TRAINING_STAGE_TIMED_S11; | |
| 358 } | |
| 359 } | |
| 360 break; | |
| 361 case V22BIS_TX_TRAINING_STAGE_TIMED_S11: | |
| 362 /* A timed period of scrambled ones at 1200bps. */ | |
| 363 if (++s->tx.training_count >= ms_to_symbols(756)) | |
| 364 { | |
| 365 if (s->negotiated_bit_rate == 2400) | |
| 366 { | |
| 367 span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting S1111 (C)\n"); | |
| 368 s->tx.training_count = 0; | |
| 369 s->tx.training = V22BIS_TX_TRAINING_STAGE_S1111; | |
| 370 } | |
| 371 else | |
| 372 { | |
| 373 span_log(&s->logging, SPAN_LOG_FLOW, "+++ Tx normal operation (1200)\n"); | |
| 374 s->tx.training_count = 0; | |
| 375 s->tx.training = V22BIS_TX_TRAINING_STAGE_NORMAL_OPERATION; | |
| 376 v22bis_report_status_change(s, SIG_STATUS_TRAINING_SUCCEEDED); | |
| 377 s->tx.current_get_bit = s->get_bit; | |
| 378 } | |
| 379 } | |
| 380 /* Fall through */ | |
| 381 case V22BIS_TX_TRAINING_STAGE_S11: | |
| 382 /* Scrambled ones at 1200bps. */ | |
| 383 bits = scramble(s, 1); | |
| 384 bits = (bits << 1) | scramble(s, 1); | |
| 385 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[bits]) & 3; | |
| 386 z = v22bis_constellation[(s->tx.constellation_state << 2) | 0x01]; | |
| 387 break; | |
| 388 case V22BIS_TX_TRAINING_STAGE_S1111: | |
| 389 /* Scrambled ones at 2400bps. We send a timed 200ms burst, and switch to normal operation at 2400bps */ | |
| 390 bits = scramble(s, 1); | |
| 391 bits = (bits << 1) | scramble(s, 1); | |
| 392 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[bits]) & 3; | |
| 393 bits = scramble(s, 1); | |
| 394 bits = (bits << 1) | scramble(s, 1); | |
| 395 z = v22bis_constellation[(s->tx.constellation_state << 2) | bits]; | |
| 396 if (++s->tx.training_count >= ms_to_symbols(200)) | |
| 397 { | |
| 398 /* We have completed training. Now handle some real work. */ | |
| 399 span_log(&s->logging, SPAN_LOG_FLOW, "+++ Tx normal operation (2400)\n"); | |
| 400 s->tx.training_count = 0; | |
| 401 s->tx.training = V22BIS_TX_TRAINING_STAGE_NORMAL_OPERATION; | |
| 402 v22bis_report_status_change(s, SIG_STATUS_TRAINING_SUCCEEDED); | |
| 403 s->tx.current_get_bit = s->get_bit; | |
| 404 } | |
| 405 break; | |
| 406 case V22BIS_TX_TRAINING_STAGE_PARKED: | |
| 407 default: | |
| 408 z = complex_setf(0.0f, 0.0f); | |
| 409 break; | |
| 410 } | |
| 411 return z; | |
| 412 } | |
| 413 /*- End of function --------------------------------------------------------*/ | |
| 414 | |
| 415 static complexf_t getbaud(v22bis_state_t *s) | |
| 416 { | |
| 417 int bits; | |
| 418 | |
| 419 if (s->tx.training) | |
| 420 { | |
| 421 /* Send the training sequence */ | |
| 422 return training_get(s); | |
| 423 } | |
| 424 | |
| 425 /* There is no graceful shutdown procedure defined for V.22bis. Just | |
| 426 send some ones, to ensure we get the real data bits through, even | |
| 427 with bad ISI. */ | |
| 428 if (s->tx.shutdown) | |
| 429 { | |
| 430 if (++s->tx.shutdown > 10) | |
| 431 return complex_setf(0.0f, 0.0f); | |
| 432 } | |
| 433 /* The first two bits define the quadrant */ | |
| 434 bits = get_scrambled_bit(s); | |
| 435 bits = (bits << 1) | get_scrambled_bit(s); | |
| 436 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[bits]) & 3; | |
| 437 if (s->negotiated_bit_rate == 1200) | |
| 438 { | |
| 439 bits = 0x01; | |
| 440 } | |
| 441 else | |
| 442 { | |
| 443 /* The other two bits define the position within the quadrant */ | |
| 444 bits = get_scrambled_bit(s); | |
| 445 bits = (bits << 1) | get_scrambled_bit(s); | |
| 446 } | |
| 447 return v22bis_constellation[(s->tx.constellation_state << 2) | bits]; | |
| 448 } | |
| 449 /*- End of function --------------------------------------------------------*/ | |
| 450 | |
| 451 SPAN_DECLARE_NONSTD(int) v22bis_tx(v22bis_state_t *s, int16_t amp[], int len) | |
| 452 { | |
| 453 complexf_t x; | |
| 454 complexf_t z; | |
| 455 int i; | |
| 456 int sample; | |
| 457 float famp; | |
| 458 | |
| 459 if (s->tx.shutdown > 10) | |
| 460 return 0; | |
| 461 for (sample = 0; sample < len; sample++) | |
| 462 { | |
| 463 if ((s->tx.baud_phase += 3) >= 40) | |
| 464 { | |
| 465 s->tx.baud_phase -= 40; | |
| 466 s->tx.rrc_filter[s->tx.rrc_filter_step] = | |
| 467 s->tx.rrc_filter[s->tx.rrc_filter_step + V22BIS_TX_FILTER_STEPS] = getbaud(s); | |
| 468 if (++s->tx.rrc_filter_step >= V22BIS_TX_FILTER_STEPS) | |
| 469 s->tx.rrc_filter_step = 0; | |
| 470 } | |
| 471 /* Root raised cosine pulse shaping at baseband */ | |
| 472 x = complex_setf(0.0f, 0.0f); | |
| 473 for (i = 0; i < V22BIS_TX_FILTER_STEPS; i++) | |
| 474 { | |
| 475 x.re += tx_pulseshaper[39 - s->tx.baud_phase][i]*s->tx.rrc_filter[i + s->tx.rrc_filter_step].re; | |
| 476 x.im += tx_pulseshaper[39 - s->tx.baud_phase][i]*s->tx.rrc_filter[i + s->tx.rrc_filter_step].im; | |
| 477 } | |
| 478 /* Now create and modulate the carrier */ | |
| 479 z = dds_complexf(&(s->tx.carrier_phase), s->tx.carrier_phase_rate); | |
| 480 famp = (x.re*z.re - x.im*z.im)*s->tx.gain; | |
| 481 if (s->tx.guard_phase_rate && (s->tx.rrc_filter[s->tx.rrc_filter_step].re != 0.0f || s->tx.rrc_filter[i + s->tx.rrc_filter_step].im != 0.0f)) | |
| 482 { | |
| 483 /* Add the guard tone */ | |
| 484 famp += dds_modf(&(s->tx.guard_phase), s->tx.guard_phase_rate, s->tx.guard_level, 0); | |
| 485 } | |
| 486 /* Don't bother saturating. We should never clip. */ | |
| 487 amp[sample] = (int16_t) lfastrintf(famp); | |
| 488 } | |
| 489 return sample; | |
| 490 } | |
| 491 /*- End of function --------------------------------------------------------*/ | |
| 492 | |
| 493 SPAN_DECLARE(void) v22bis_tx_power(v22bis_state_t *s, float power) | |
| 494 { | |
| 495 float l; | |
| 496 | |
| 497 if (s->tx.guard_phase_rate == dds_phase_ratef(550.0f)) | |
| 498 { | |
| 499 l = 1.6f*powf(10.0f, (power - 1.0f - DBM0_MAX_POWER)/20.0f); | |
| 500 s->tx.gain = l*32768.0f/(TX_PULSESHAPER_GAIN*3.0f); | |
| 501 l = powf(10.0f, (power - 1.0f - 3.0f - DBM0_MAX_POWER)/20.0f); | |
| 502 s->tx.guard_level = l*32768.0f; | |
| 503 } | |
| 504 else if(s->tx.guard_phase_rate == dds_phase_ratef(1800.0f)) | |
| 505 { | |
| 506 l = 1.6f*powf(10.0f, (power - 1.0f - 1.0f - DBM0_MAX_POWER)/20.0f); | |
| 507 s->tx.gain = l*32768.0f/(TX_PULSESHAPER_GAIN*3.0f); | |
| 508 l = powf(10.0f, (power - 1.0f - 6.0f - DBM0_MAX_POWER)/20.0f); | |
| 509 s->tx.guard_level = l*32768.0f; | |
| 510 } | |
| 511 else | |
| 512 { | |
| 513 l = 1.6f*powf(10.0f, (power - DBM0_MAX_POWER)/20.0f); | |
| 514 s->tx.gain = l*32768.0f/(TX_PULSESHAPER_GAIN*3.0f); | |
| 515 s->tx.guard_level = 0; | |
| 516 } | |
| 517 } | |
| 518 /*- End of function --------------------------------------------------------*/ | |
| 519 | |
| 520 static int v22bis_tx_restart(v22bis_state_t *s) | |
| 521 { | |
| 522 cvec_zerof(s->tx.rrc_filter, sizeof(s->tx.rrc_filter)/sizeof(s->tx.rrc_filter[0])); | |
| 523 s->tx.rrc_filter_step = 0; | |
| 524 s->tx.scramble_reg = 0; | |
| 525 s->tx.scrambler_pattern_count = 0; | |
| 526 if (s->calling_party) | |
| 527 s->tx.training = V22BIS_TX_TRAINING_STAGE_INITIAL_SILENCE; | |
| 528 else | |
| 529 s->tx.training = V22BIS_TX_TRAINING_STAGE_INITIAL_TIMED_SILENCE; | |
| 530 s->tx.training_count = 0; | |
| 531 s->tx.carrier_phase = 0; | |
| 532 s->tx.guard_phase = 0; | |
| 533 s->tx.baud_phase = 0; | |
| 534 s->tx.constellation_state = 0; | |
| 535 s->tx.current_get_bit = fake_get_bit; | |
| 536 s->tx.shutdown = 0; | |
| 537 return 0; | |
| 538 } | |
| 539 /*- End of function --------------------------------------------------------*/ | |
| 540 | |
| 541 SPAN_DECLARE(void) v22bis_set_get_bit(v22bis_state_t *s, get_bit_func_t get_bit, void *user_data) | |
| 542 { | |
| 543 s->get_bit = get_bit; | |
| 544 s->get_bit_user_data = user_data; | |
| 545 } | |
| 546 /*- End of function --------------------------------------------------------*/ | |
| 547 | |
| 548 SPAN_DECLARE(void) v22bis_set_put_bit(v22bis_state_t *s, put_bit_func_t put_bit, void *user_data) | |
| 549 { | |
| 550 s->put_bit = put_bit; | |
| 551 s->put_bit_user_data = user_data; | |
| 552 } | |
| 553 /*- End of function --------------------------------------------------------*/ | |
| 554 | |
| 555 SPAN_DECLARE(void) v22bis_set_modem_status_handler(v22bis_state_t *s, modem_tx_status_func_t handler, void *user_data) | |
| 556 { | |
| 557 s->status_handler = handler; | |
| 558 s->status_user_data = user_data; | |
| 559 } | |
| 560 /*- End of function --------------------------------------------------------*/ | |
| 561 | |
| 562 SPAN_DECLARE(logging_state_t *) v22bis_get_logging_state(v22bis_state_t *s) | |
| 563 { | |
| 564 return &s->logging; | |
| 565 } | |
| 566 /*- End of function --------------------------------------------------------*/ | |
| 567 | |
| 568 SPAN_DECLARE(int) v22bis_restart(v22bis_state_t *s, int bit_rate) | |
| 569 { | |
| 570 switch (bit_rate) | |
| 571 { | |
| 572 case 2400: | |
| 573 case 1200: | |
| 574 break; | |
| 575 default: | |
| 576 return -1; | |
| 577 } | |
| 578 s->bit_rate = bit_rate; | |
| 579 s->negotiated_bit_rate = 1200; | |
| 580 if (v22bis_tx_restart(s)) | |
| 581 return -1; | |
| 582 return v22bis_rx_restart(s); | |
| 583 } | |
| 584 /*- End of function --------------------------------------------------------*/ | |
| 585 | |
| 586 SPAN_DECLARE(int) v22bis_request_retrain(v22bis_state_t *s, int bit_rate) | |
| 587 { | |
| 588 /* TODO: support bit rate switching */ | |
| 589 switch (bit_rate) | |
| 590 { | |
| 591 case 2400: | |
| 592 case 1200: | |
| 593 break; | |
| 594 default: | |
| 595 return -1; | |
| 596 } | |
| 597 /* TODO: support bit rate changes */ | |
| 598 /* Retrain is only valid when we are normal operation at 2400bps */ | |
| 599 if (s->rx.training != V22BIS_RX_TRAINING_STAGE_NORMAL_OPERATION | |
| 600 || | |
| 601 s->tx.training != V22BIS_TX_TRAINING_STAGE_NORMAL_OPERATION | |
| 602 || | |
| 603 s->negotiated_bit_rate != 2400) | |
| 604 { | |
| 605 return -1; | |
| 606 } | |
| 607 /* Send things back into the training process at the appropriate point. | |
| 608 The far end should detect the S1 signal, and reciprocate. */ | |
| 609 span_log(&s->logging, SPAN_LOG_FLOW, "+++ Initiating a retrain\n"); | |
| 610 s->rx.pattern_repeats = 0; | |
| 611 s->rx.training_count = 0; | |
| 612 s->rx.training = V22BIS_RX_TRAINING_STAGE_SCRAMBLED_ONES_AT_1200; | |
| 613 s->tx.training_count = 0; | |
| 614 s->tx.training = V22BIS_TX_TRAINING_STAGE_U0011; | |
| 615 v22bis_equalizer_coefficient_reset(s); | |
| 616 v22bis_report_status_change(s, SIG_STATUS_MODEM_RETRAIN_OCCURRED); | |
| 617 return 0; | |
| 618 } | |
| 619 /*- End of function --------------------------------------------------------*/ | |
| 620 | |
| 621 SPAN_DECLARE(int) v22bis_remote_loopback(v22bis_state_t *s, int enable) | |
| 622 { | |
| 623 /* TODO: */ | |
| 624 return -1; | |
| 625 } | |
| 626 /*- End of function --------------------------------------------------------*/ | |
| 627 | |
| 628 SPAN_DECLARE(int) v22bis_current_bit_rate(v22bis_state_t *s) | |
| 629 { | |
| 630 return s->negotiated_bit_rate; | |
| 631 } | |
| 632 /*- End of function --------------------------------------------------------*/ | |
| 633 | |
| 634 SPAN_DECLARE(v22bis_state_t *) v22bis_init(v22bis_state_t *s, | |
| 635 int bit_rate, | |
| 636 int guard, | |
| 637 int calling_party, | |
| 638 get_bit_func_t get_bit, | |
| 639 void *get_bit_user_data, | |
| 640 put_bit_func_t put_bit, | |
| 641 void *put_bit_user_data) | |
| 642 { | |
| 643 switch (bit_rate) | |
| 644 { | |
| 645 case 2400: | |
| 646 case 1200: | |
| 647 break; | |
| 648 default: | |
| 649 return NULL; | |
| 650 } | |
| 651 if (s == NULL) | |
| 652 { | |
| 653 if ((s = (v22bis_state_t *) malloc(sizeof(*s))) == NULL) | |
| 654 return NULL; | |
| 655 } | |
| 656 memset(s, 0, sizeof(*s)); | |
| 657 span_log_init(&s->logging, SPAN_LOG_NONE, NULL); | |
| 658 span_log_set_protocol(&s->logging, "V.22bis"); | |
| 659 s->bit_rate = bit_rate; | |
| 660 s->calling_party = calling_party; | |
| 661 | |
| 662 s->get_bit = get_bit; | |
| 663 s->get_bit_user_data = get_bit_user_data; | |
| 664 s->put_bit = put_bit; | |
| 665 s->put_bit_user_data = put_bit_user_data; | |
| 666 | |
| 667 if (s->calling_party) | |
| 668 { | |
| 669 s->tx.carrier_phase_rate = dds_phase_ratef(1200.0f); | |
| 670 } | |
| 671 else | |
| 672 { | |
| 673 s->tx.carrier_phase_rate = dds_phase_ratef(2400.0f); | |
| 674 switch (guard) | |
| 675 { | |
| 676 case V22BIS_GUARD_TONE_550HZ: | |
| 677 s->tx.guard_phase_rate = dds_phase_ratef(550.0f); | |
| 678 break; | |
| 679 case V22BIS_GUARD_TONE_1800HZ: | |
| 680 s->tx.guard_phase_rate = dds_phase_ratef(1800.0f); | |
| 681 break; | |
| 682 default: | |
| 683 s->tx.guard_phase_rate = 0; | |
| 684 break; | |
| 685 } | |
| 686 } | |
| 687 v22bis_tx_power(s, -14.0f); | |
| 688 v22bis_restart(s, s->bit_rate); | |
| 689 return s; | |
| 690 } | |
| 691 /*- End of function --------------------------------------------------------*/ | |
| 692 | |
| 693 SPAN_DECLARE(int) v22bis_release(v22bis_state_t *s) | |
| 694 { | |
| 695 return 0; | |
| 696 } | |
| 697 /*- End of function --------------------------------------------------------*/ | |
| 698 | |
| 699 SPAN_DECLARE(int) v22bis_free(v22bis_state_t *s) | |
| 700 { | |
| 701 free(s); | |
| 702 return 0; | |
| 703 } | |
| 704 /*- End of function --------------------------------------------------------*/ | |
| 705 /*- End of file ------------------------------------------------------------*/ |
