Mercurial > hg > audiostuff
comparison spandsp-0.0.6pre17/src/v22bis_tx.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:c6c5a16ce2f2 | 4:26cd8f1ef0b1 |
---|---|
1 /* | |
2 * SpanDSP - a series of DSP components for telephony | |
3 * | |
4 * v22bis_tx.c - ITU V.22bis modem transmit part | |
5 * | |
6 * Written by Steve Underwood <steveu@coppice.org> | |
7 * | |
8 * Copyright (C) 2004 Steve Underwood | |
9 * | |
10 * All rights reserved. | |
11 * | |
12 * This program is free software; you can redistribute it and/or modify | |
13 * it under the terms of the GNU Lesser General Public License version 2.1, | |
14 * as published by the Free Software Foundation. | |
15 * | |
16 * This program is distributed in the hope that it will be useful, | |
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 * GNU Lesser General Public License for more details. | |
20 * | |
21 * You should have received a copy of the GNU Lesser General Public | |
22 * License along with this program; if not, write to the Free Software | |
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
24 * | |
25 * $Id: v22bis_tx.c,v 1.64 2009/11/04 15:52:06 steveu Exp $ | |
26 */ | |
27 | |
28 /*! \file */ | |
29 | |
30 /* THIS IS A WORK IN PROGRESS - It is basically functional, but it is not feature | |
31 complete, and doesn't reliably sync over the signal and noise level ranges it should! */ | |
32 | |
33 #if defined(HAVE_CONFIG_H) | |
34 #include "config.h" | |
35 #endif | |
36 | |
37 #include <stdio.h> | |
38 #include <inttypes.h> | |
39 #include <stdlib.h> | |
40 #include <string.h> | |
41 #if defined(HAVE_TGMATH_H) | |
42 #include <tgmath.h> | |
43 #endif | |
44 #if defined(HAVE_MATH_H) | |
45 #include <math.h> | |
46 #endif | |
47 #include "floating_fudge.h" | |
48 | |
49 #include "spandsp/telephony.h" | |
50 #include "spandsp/fast_convert.h" | |
51 #include "spandsp/logging.h" | |
52 #include "spandsp/complex.h" | |
53 #include "spandsp/vector_float.h" | |
54 #include "spandsp/complex_vector_float.h" | |
55 #include "spandsp/async.h" | |
56 #include "spandsp/dds.h" | |
57 #include "spandsp/power_meter.h" | |
58 | |
59 #include "spandsp/v29rx.h" | |
60 #include "spandsp/v22bis.h" | |
61 | |
62 #include "spandsp/private/logging.h" | |
63 #include "spandsp/private/v22bis.h" | |
64 | |
65 #if defined(SPANDSP_USE_FIXED_POINTx) | |
66 #include "v22bis_tx_fixed_rrc.h" | |
67 #else | |
68 #include "v22bis_tx_floating_rrc.h" | |
69 #endif | |
70 | |
71 /* Quoting from the V.22bis spec. | |
72 | |
73 6.3.1.1 Interworking at 2400 bit/s | |
74 | |
75 6.3.1.1.1 Calling modem | |
76 | |
77 a) On connection to line the calling modem shall be conditioned to receive signals | |
78 in the high channel at 1200 bit/s and transmit signals in the low channel at 1200 bit/s | |
79 in accordance with section 2.5.2.2. It shall apply an ON condition to circuit 107 in accordance | |
80 with Recommendation V.25. The modem shall initially remain silent. | |
81 | |
82 b) After 155 +-10 ms of unscrambled binary 1 has been detected, the modem shall remain silent | |
83 for a further 456 +-10 ms then transmit an unscrambled repetitive double dibit pattern of 00 | |
84 and 11 at 1200 bit/s for 100 +-3 ms. Following this signal the modem shall transmit scrambled | |
85 binary 1 at 1200 bit/s. | |
86 | |
87 c) If the modem detects scrambled binary 1 in the high channel at 1200 bit/s for 270 +-40 ms, | |
88 the handshake shall continue in accordance with section 6.3.1.2.1 c) and d). However, if unscrambled | |
89 repetitive double dibit 00 and 11 at 1200 bit/s is detected in the high channel, then at the | |
90 end of receipt of this signal the modem shall apply an ON condition to circuit 112. | |
91 | |
92 d) 600 +-10 ms after circuit 112 has been turned ON the modem shall begin transmitting scrambled | |
93 binary 1 at 2400 bit/s, and 450 +-10 ms after circuit 112 has been turned ON the receiver may | |
94 begin making 16-way decisions. | |
95 | |
96 e) Following transmission of scrambled binary 1 at 2400 bit/s for 200 +-10 ms, circuit 106 shall | |
97 be conditioned to respond to circuit 105 and the modem shall be ready to transmit data at | |
98 2400 bit/s. | |
99 | |
100 f) When 32 consecutive bits of scrambled binary 1 at 2400 bit/s have been detected in the high | |
101 channel the modem shall be ready to receive data at 2400 bit/s and shall apply an ON condition | |
102 to circuit 109. | |
103 | |
104 6.3.1.1.2 Answering modem | |
105 | |
106 a) On connection to line the answering modem shall be conditioned to transmit signals in the high | |
107 channel at 1200 bit/s in accordance with section 2.5.2.2 and receive signals in the low channel at | |
108 1200 bit/s. Following transmission of the answer sequence in accordance with Recommendation | |
109 V.25, the modem shall apply an ON condition to circuit 107 and then transmit unscrambled | |
110 binary 1 at 1200 bit/s. | |
111 | |
112 b) If the modem detects scrambled binary 1 or 0 in the low channel at 1200 bit/s for 270 +-40 ms, | |
113 the handshake shall continue in accordance with section 6.3.1.2.2 b) and c). However, if unscrambled | |
114 repetitive double dibit 00 and 11 at 1200 bit/s is detected in the low channel, at the end of | |
115 receipt of this signal the modem shall apply an ON condition to circuit 112 and then transmit | |
116 an unscrambled repetitive double dibit pattern of 00 and 11 at 1200 bit/s for 100 +-3 ms. | |
117 Following these signals the modem shall transmit scrambled binary 1 at 1200 bit/s. | |
118 | |
119 c) 600 +-10 ms after circuit 112 has been turned ON the modem shall begin transmitting scrambled | |
120 binary 1 at 2400 bit/s, and 450 +-10 ms after circuit 112 has been turned ON the receiver may | |
121 begin making 16-way decisions. | |
122 | |
123 d) Following transmission of scrambled binary 1 at 2400 bit/s for 200 +-10 ms, circuit 106 shall | |
124 be conditioned to respond to circuit 105 and the modem shall be ready to transmit data at | |
125 2400 bit/s. | |
126 | |
127 e) When 32 consecutive bits of scrambled binary 1 at 2400 bit/s have been detected in the low | |
128 channel the modem shall be ready to receive data at 2400 bit/s and shall apply an ON | |
129 condition to circuit 109. | |
130 | |
131 6.3.1.2 Interworking at 1200 bit/s | |
132 | |
133 The following handshake is identical to the Recommendation V.22 alternative A and B handshake. | |
134 | |
135 6.3.1.2.1 Calling modem | |
136 | |
137 a) On connection to line the calling modem shall be conditioned to receive signals in the high | |
138 channel at 1200 bit/s and transmit signals in the low channel at 1200 bit/s in accordance | |
139 with section 2.5.2.2. It shall apply an ON condition to circuit 107 in accordance with | |
140 Recommendation V.25. The modem shall initially remain silent. | |
141 | |
142 b) After 155 +-10 ms of unscrambled binary 1 has been detected, the modem shall remain silent | |
143 for a further 456 +-10 ms then transmit scrambled binary 1 at 1200 bit/s (a preceding V.22 bis | |
144 signal, as shown in Figure 7/V.22 bis, would not affect the operation of a V.22 answer modem). | |
145 | |
146 c) On detection of scrambled binary 1 in the high channel at 1200 bit/s for 270 +-40 ms the modem | |
147 shall be ready to receive data at 1200 bit/s and shall apply an ON condition to circuit 109 and | |
148 an OFF condition to circuit 112. | |
149 | |
150 d) 765 +-10 ms after circuit 109 has been turned ON, circuit 106 shall be conditioned to respond | |
151 to circuit 105 and the modem shall be ready to transmit data at 1200 bit/s. | |
152 | |
153 6.3.1.2.2 Answering modem | |
154 | |
155 a) On connection to line the answering modem shall be conditioned to transmit signals in the high | |
156 channel at 1200 bit/s in accordance with section 2.5.2.2 and receive signals in the low channel at | |
157 1200 bit/s. | |
158 | |
159 Following transmission of the answer sequence in accordance with V.25 the modem shall apply | |
160 an ON condition to circuit 107 and then transmit unscrambled binary 1 at 1200 bit/s. | |
161 | |
162 b) On detection of scrambled binary 1 or 0 in the low channel at 1200 bit/s for 270 +-40 ms the | |
163 modem shall apply an OFF condition to circuit 112 and shall then transmit scrambled binary 1 | |
164 at 1200 bit/s. | |
165 | |
166 c) After scrambled binary 1 has been transmitted at 1200 bit/s for 765 +-10 ms the modem shall be | |
167 ready to transmit and receive data at 1200 bit/s, shall condition circuit 106 to respond to | |
168 circuit 105 and shall apply an ON condition to circuit 109. | |
169 | |
170 Note - Manufacturers may wish to note that in certain countries, for national purposes, modems are | |
171 in service which emit an answering tone of 2225 Hz instead of unscrambled binary 1. | |
172 | |
173 | |
174 V.22bis to V.22bis | |
175 ------------------ | |
176 Calling party | |
177 S1 scrambled 1's scrambled 1's data | |
178 at 1200bps at 2400bps | |
179 |---------------------------------------------------------|XXXXXXXX|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
180 |<155+-10>|<456+-10>|<100+-3>| |<------600+-10------>|<---200+-10-->| | |
181 ^ | ^<----450+-100---->|[16 way decisions begin] | |
182 | | | | |
183 | v | | |
184 | |<------450+-100----->|[16 way decisions begin] | |
185 | |<----------600+-10-------->| | |
186 |<2150+-350>|<--3300+-700->|<75+-20>| |<100+-3>| |<---200+-10--> | |
187 |-----------|XXXXXXXXXXXXXX|--------|XXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXX|XXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
188 silence 2100Hz unscrambled 1's S1 scrambled 1's scrambled 1's data | |
189 at 1200bps at 1200bps at 2400bps | |
190 Answering party | |
191 | |
192 S1 = Unscrambled double dibit 00 and 11 at 1200bps | |
193 When the 2400bps section starts, both sides should look for 32 bits of continuous ones, as a test of integrity. | |
194 | |
195 | |
196 | |
197 | |
198 V.22 to V.22bis | |
199 --------------- | |
200 Calling party | |
201 scrambled 1's data | |
202 at 1200bps | |
203 |---------------------------------------------------------|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
204 |<155+-10>|<456+-10>| |<270+-40>|<--------765+-10-------->| | |
205 ^ | ^ | |
206 | | | | |
207 | | | | |
208 | | | | |
209 | v | | |
210 |<2150+-350>|<--3300+-700->|<75+-20>| |<270+-40>|<---------765+-10-------->| | |
211 |-----------|XXXXXXXXXXXXXX|--------|XXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
212 silence 2100Hz unscrambled 1's scrambled 1's data | |
213 at 1200bps at 1200bps | |
214 Answering party | |
215 | |
216 Both ends should accept unscrambled binary 1 or binary 0 as the preamble. | |
217 | |
218 | |
219 | |
220 | |
221 V.22bis to V.22 | |
222 --------------- | |
223 Calling party | |
224 S1 scrambled 1's data | |
225 at 1200bps | |
226 |---------------------------------------------------------|XXXXXXXX|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
227 |<155+-10>|<456+-10>|<100+-3>| |<-270+-40-><------765+-10------>| | |
228 ^ | ^ | |
229 | | | | |
230 | v | | |
231 | | | |
232 | | | |
233 |<2150+-350>|<--3300+-700->|<75+-20>| |<-270+-40->|<------765+-10----->| | |
234 |-----------|XXXXXXXXXXXXXX|--------|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXXXXXXXX|XXXXXXXXXXXXX | |
235 silence 2100Hz unscrambled 1's scrambled 1's data | |
236 at 1200bps at 1200bps | |
237 Answering party | |
238 | |
239 Both ends should accept unscrambled binary 1 or binary 0 as the preamble. | |
240 */ | |
241 | |
242 #define ms_to_symbols(t) (((t)*600)/1000) | |
243 | |
244 static const int phase_steps[4] = | |
245 { | |
246 1, 0, 2, 3 | |
247 }; | |
248 | |
249 const complexf_t v22bis_constellation[16] = | |
250 { | |
251 { 1.0f, 1.0f}, | |
252 { 3.0f, 1.0f}, /* 1200bps 00 */ | |
253 { 1.0f, 3.0f}, | |
254 { 3.0f, 3.0f}, | |
255 {-1.0f, 1.0f}, | |
256 {-1.0f, 3.0f}, /* 1200bps 01 */ | |
257 {-3.0f, 1.0f}, | |
258 {-3.0f, 3.0f}, | |
259 {-1.0f, -1.0f}, | |
260 {-3.0f, -1.0f}, /* 1200bps 10 */ | |
261 {-1.0f, -3.0f}, | |
262 {-3.0f, -3.0f}, | |
263 { 1.0f, -1.0f}, | |
264 { 1.0f, -3.0f}, /* 1200bps 11 */ | |
265 { 3.0f, -1.0f}, | |
266 { 3.0f, -3.0f} | |
267 }; | |
268 | |
269 static int fake_get_bit(void *user_data) | |
270 { | |
271 return 1; | |
272 } | |
273 /*- End of function --------------------------------------------------------*/ | |
274 | |
275 static __inline__ int scramble(v22bis_state_t *s, int bit) | |
276 { | |
277 int out_bit; | |
278 | |
279 if (s->tx.scrambler_pattern_count >= 64) | |
280 { | |
281 bit ^= 1; | |
282 s->tx.scrambler_pattern_count = 0; | |
283 } | |
284 out_bit = (bit ^ (s->tx.scramble_reg >> 13) ^ (s->tx.scramble_reg >> 16)) & 1; | |
285 s->tx.scramble_reg = (s->tx.scramble_reg << 1) | out_bit; | |
286 | |
287 if (out_bit == 1) | |
288 s->tx.scrambler_pattern_count++; | |
289 else | |
290 s->tx.scrambler_pattern_count = 0; | |
291 return out_bit; | |
292 } | |
293 /*- End of function --------------------------------------------------------*/ | |
294 | |
295 static __inline__ int get_scrambled_bit(v22bis_state_t *s) | |
296 { | |
297 int bit; | |
298 | |
299 if ((bit = s->tx.current_get_bit(s->get_bit_user_data)) == SIG_STATUS_END_OF_DATA) | |
300 { | |
301 /* Fill out this symbol with ones, and prepare to send | |
302 the rest of the shutdown sequence. */ | |
303 s->tx.current_get_bit = fake_get_bit; | |
304 s->tx.shutdown = 1; | |
305 bit = 1; | |
306 } | |
307 return scramble(s, bit); | |
308 } | |
309 /*- End of function --------------------------------------------------------*/ | |
310 | |
311 static complexf_t training_get(v22bis_state_t *s) | |
312 { | |
313 complexf_t z; | |
314 int bits; | |
315 | |
316 /* V.22bis training sequence */ | |
317 switch (s->tx.training) | |
318 { | |
319 case V22BIS_TX_TRAINING_STAGE_INITIAL_TIMED_SILENCE: | |
320 /* The answerer waits 75ms, then sends unscrambled ones */ | |
321 if (++s->tx.training_count >= ms_to_symbols(75)) | |
322 { | |
323 /* Initial 75ms of silence is over */ | |
324 span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting U11 1200\n"); | |
325 s->tx.training_count = 0; | |
326 s->tx.training = V22BIS_TX_TRAINING_STAGE_U11; | |
327 } | |
328 /* Fall through */ | |
329 case V22BIS_TX_TRAINING_STAGE_INITIAL_SILENCE: | |
330 /* Silence */ | |
331 s->tx.constellation_state = 0; | |
332 z = complex_setf(0.0f, 0.0f); | |
333 break; | |
334 case V22BIS_TX_TRAINING_STAGE_U11: | |
335 /* Send continuous unscrambled ones at 1200bps (i.e. 270 degree phase steps). */ | |
336 /* Only the answering modem sends unscrambled ones. It is the first thing exchanged between the modems. */ | |
337 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[3]) & 3; | |
338 z = v22bis_constellation[(s->tx.constellation_state << 2) | 0x01]; | |
339 break; | |
340 case V22BIS_TX_TRAINING_STAGE_U0011: | |
341 /* Continuous unscrambled double dibit 00 11 at 1200bps. This is termed the S1 segment in | |
342 the V.22bis spec. It is only sent to request or accept 2400bps mode, and lasts 100+-3ms. After this | |
343 timed burst, we unconditionally change to sending scrambled ones at 1200bps. */ | |
344 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[3*(s->tx.training_count & 1)]) & 3; | |
345 z = v22bis_constellation[(s->tx.constellation_state << 2) | 0x01]; | |
346 if (++s->tx.training_count >= ms_to_symbols(100)) | |
347 { | |
348 span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting S11 after U0011\n"); | |
349 if (s->calling_party) | |
350 { | |
351 s->tx.training_count = 0; | |
352 s->tx.training = V22BIS_TX_TRAINING_STAGE_S11; | |
353 } | |
354 else | |
355 { | |
356 s->tx.training_count = ms_to_symbols(756 - (600 - 100)); | |
357 s->tx.training = V22BIS_TX_TRAINING_STAGE_TIMED_S11; | |
358 } | |
359 } | |
360 break; | |
361 case V22BIS_TX_TRAINING_STAGE_TIMED_S11: | |
362 /* A timed period of scrambled ones at 1200bps. */ | |
363 if (++s->tx.training_count >= ms_to_symbols(756)) | |
364 { | |
365 if (s->negotiated_bit_rate == 2400) | |
366 { | |
367 span_log(&s->logging, SPAN_LOG_FLOW, "+++ starting S1111 (C)\n"); | |
368 s->tx.training_count = 0; | |
369 s->tx.training = V22BIS_TX_TRAINING_STAGE_S1111; | |
370 } | |
371 else | |
372 { | |
373 span_log(&s->logging, SPAN_LOG_FLOW, "+++ Tx normal operation (1200)\n"); | |
374 s->tx.training_count = 0; | |
375 s->tx.training = V22BIS_TX_TRAINING_STAGE_NORMAL_OPERATION; | |
376 v22bis_report_status_change(s, SIG_STATUS_TRAINING_SUCCEEDED); | |
377 s->tx.current_get_bit = s->get_bit; | |
378 } | |
379 } | |
380 /* Fall through */ | |
381 case V22BIS_TX_TRAINING_STAGE_S11: | |
382 /* Scrambled ones at 1200bps. */ | |
383 bits = scramble(s, 1); | |
384 bits = (bits << 1) | scramble(s, 1); | |
385 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[bits]) & 3; | |
386 z = v22bis_constellation[(s->tx.constellation_state << 2) | 0x01]; | |
387 break; | |
388 case V22BIS_TX_TRAINING_STAGE_S1111: | |
389 /* Scrambled ones at 2400bps. We send a timed 200ms burst, and switch to normal operation at 2400bps */ | |
390 bits = scramble(s, 1); | |
391 bits = (bits << 1) | scramble(s, 1); | |
392 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[bits]) & 3; | |
393 bits = scramble(s, 1); | |
394 bits = (bits << 1) | scramble(s, 1); | |
395 z = v22bis_constellation[(s->tx.constellation_state << 2) | bits]; | |
396 if (++s->tx.training_count >= ms_to_symbols(200)) | |
397 { | |
398 /* We have completed training. Now handle some real work. */ | |
399 span_log(&s->logging, SPAN_LOG_FLOW, "+++ Tx normal operation (2400)\n"); | |
400 s->tx.training_count = 0; | |
401 s->tx.training = V22BIS_TX_TRAINING_STAGE_NORMAL_OPERATION; | |
402 v22bis_report_status_change(s, SIG_STATUS_TRAINING_SUCCEEDED); | |
403 s->tx.current_get_bit = s->get_bit; | |
404 } | |
405 break; | |
406 case V22BIS_TX_TRAINING_STAGE_PARKED: | |
407 default: | |
408 z = complex_setf(0.0f, 0.0f); | |
409 break; | |
410 } | |
411 return z; | |
412 } | |
413 /*- End of function --------------------------------------------------------*/ | |
414 | |
415 static complexf_t getbaud(v22bis_state_t *s) | |
416 { | |
417 int bits; | |
418 | |
419 if (s->tx.training) | |
420 { | |
421 /* Send the training sequence */ | |
422 return training_get(s); | |
423 } | |
424 | |
425 /* There is no graceful shutdown procedure defined for V.22bis. Just | |
426 send some ones, to ensure we get the real data bits through, even | |
427 with bad ISI. */ | |
428 if (s->tx.shutdown) | |
429 { | |
430 if (++s->tx.shutdown > 10) | |
431 return complex_setf(0.0f, 0.0f); | |
432 } | |
433 /* The first two bits define the quadrant */ | |
434 bits = get_scrambled_bit(s); | |
435 bits = (bits << 1) | get_scrambled_bit(s); | |
436 s->tx.constellation_state = (s->tx.constellation_state + phase_steps[bits]) & 3; | |
437 if (s->negotiated_bit_rate == 1200) | |
438 { | |
439 bits = 0x01; | |
440 } | |
441 else | |
442 { | |
443 /* The other two bits define the position within the quadrant */ | |
444 bits = get_scrambled_bit(s); | |
445 bits = (bits << 1) | get_scrambled_bit(s); | |
446 } | |
447 return v22bis_constellation[(s->tx.constellation_state << 2) | bits]; | |
448 } | |
449 /*- End of function --------------------------------------------------------*/ | |
450 | |
451 SPAN_DECLARE_NONSTD(int) v22bis_tx(v22bis_state_t *s, int16_t amp[], int len) | |
452 { | |
453 complexf_t x; | |
454 complexf_t z; | |
455 int i; | |
456 int sample; | |
457 float famp; | |
458 | |
459 if (s->tx.shutdown > 10) | |
460 return 0; | |
461 for (sample = 0; sample < len; sample++) | |
462 { | |
463 if ((s->tx.baud_phase += 3) >= 40) | |
464 { | |
465 s->tx.baud_phase -= 40; | |
466 s->tx.rrc_filter[s->tx.rrc_filter_step] = | |
467 s->tx.rrc_filter[s->tx.rrc_filter_step + V22BIS_TX_FILTER_STEPS] = getbaud(s); | |
468 if (++s->tx.rrc_filter_step >= V22BIS_TX_FILTER_STEPS) | |
469 s->tx.rrc_filter_step = 0; | |
470 } | |
471 /* Root raised cosine pulse shaping at baseband */ | |
472 x = complex_setf(0.0f, 0.0f); | |
473 for (i = 0; i < V22BIS_TX_FILTER_STEPS; i++) | |
474 { | |
475 x.re += tx_pulseshaper[39 - s->tx.baud_phase][i]*s->tx.rrc_filter[i + s->tx.rrc_filter_step].re; | |
476 x.im += tx_pulseshaper[39 - s->tx.baud_phase][i]*s->tx.rrc_filter[i + s->tx.rrc_filter_step].im; | |
477 } | |
478 /* Now create and modulate the carrier */ | |
479 z = dds_complexf(&(s->tx.carrier_phase), s->tx.carrier_phase_rate); | |
480 famp = (x.re*z.re - x.im*z.im)*s->tx.gain; | |
481 if (s->tx.guard_phase_rate && (s->tx.rrc_filter[s->tx.rrc_filter_step].re != 0.0f || s->tx.rrc_filter[i + s->tx.rrc_filter_step].im != 0.0f)) | |
482 { | |
483 /* Add the guard tone */ | |
484 famp += dds_modf(&(s->tx.guard_phase), s->tx.guard_phase_rate, s->tx.guard_level, 0); | |
485 } | |
486 /* Don't bother saturating. We should never clip. */ | |
487 amp[sample] = (int16_t) lfastrintf(famp); | |
488 } | |
489 return sample; | |
490 } | |
491 /*- End of function --------------------------------------------------------*/ | |
492 | |
493 SPAN_DECLARE(void) v22bis_tx_power(v22bis_state_t *s, float power) | |
494 { | |
495 float l; | |
496 | |
497 if (s->tx.guard_phase_rate == dds_phase_ratef(550.0f)) | |
498 { | |
499 l = 1.6f*powf(10.0f, (power - 1.0f - DBM0_MAX_POWER)/20.0f); | |
500 s->tx.gain = l*32768.0f/(TX_PULSESHAPER_GAIN*3.0f); | |
501 l = powf(10.0f, (power - 1.0f - 3.0f - DBM0_MAX_POWER)/20.0f); | |
502 s->tx.guard_level = l*32768.0f; | |
503 } | |
504 else if(s->tx.guard_phase_rate == dds_phase_ratef(1800.0f)) | |
505 { | |
506 l = 1.6f*powf(10.0f, (power - 1.0f - 1.0f - DBM0_MAX_POWER)/20.0f); | |
507 s->tx.gain = l*32768.0f/(TX_PULSESHAPER_GAIN*3.0f); | |
508 l = powf(10.0f, (power - 1.0f - 6.0f - DBM0_MAX_POWER)/20.0f); | |
509 s->tx.guard_level = l*32768.0f; | |
510 } | |
511 else | |
512 { | |
513 l = 1.6f*powf(10.0f, (power - DBM0_MAX_POWER)/20.0f); | |
514 s->tx.gain = l*32768.0f/(TX_PULSESHAPER_GAIN*3.0f); | |
515 s->tx.guard_level = 0; | |
516 } | |
517 } | |
518 /*- End of function --------------------------------------------------------*/ | |
519 | |
520 static int v22bis_tx_restart(v22bis_state_t *s) | |
521 { | |
522 cvec_zerof(s->tx.rrc_filter, sizeof(s->tx.rrc_filter)/sizeof(s->tx.rrc_filter[0])); | |
523 s->tx.rrc_filter_step = 0; | |
524 s->tx.scramble_reg = 0; | |
525 s->tx.scrambler_pattern_count = 0; | |
526 if (s->calling_party) | |
527 s->tx.training = V22BIS_TX_TRAINING_STAGE_INITIAL_SILENCE; | |
528 else | |
529 s->tx.training = V22BIS_TX_TRAINING_STAGE_INITIAL_TIMED_SILENCE; | |
530 s->tx.training_count = 0; | |
531 s->tx.carrier_phase = 0; | |
532 s->tx.guard_phase = 0; | |
533 s->tx.baud_phase = 0; | |
534 s->tx.constellation_state = 0; | |
535 s->tx.current_get_bit = fake_get_bit; | |
536 s->tx.shutdown = 0; | |
537 return 0; | |
538 } | |
539 /*- End of function --------------------------------------------------------*/ | |
540 | |
541 SPAN_DECLARE(void) v22bis_set_get_bit(v22bis_state_t *s, get_bit_func_t get_bit, void *user_data) | |
542 { | |
543 s->get_bit = get_bit; | |
544 s->get_bit_user_data = user_data; | |
545 } | |
546 /*- End of function --------------------------------------------------------*/ | |
547 | |
548 SPAN_DECLARE(void) v22bis_set_put_bit(v22bis_state_t *s, put_bit_func_t put_bit, void *user_data) | |
549 { | |
550 s->put_bit = put_bit; | |
551 s->put_bit_user_data = user_data; | |
552 } | |
553 /*- End of function --------------------------------------------------------*/ | |
554 | |
555 SPAN_DECLARE(void) v22bis_set_modem_status_handler(v22bis_state_t *s, modem_tx_status_func_t handler, void *user_data) | |
556 { | |
557 s->status_handler = handler; | |
558 s->status_user_data = user_data; | |
559 } | |
560 /*- End of function --------------------------------------------------------*/ | |
561 | |
562 SPAN_DECLARE(logging_state_t *) v22bis_get_logging_state(v22bis_state_t *s) | |
563 { | |
564 return &s->logging; | |
565 } | |
566 /*- End of function --------------------------------------------------------*/ | |
567 | |
568 SPAN_DECLARE(int) v22bis_restart(v22bis_state_t *s, int bit_rate) | |
569 { | |
570 switch (bit_rate) | |
571 { | |
572 case 2400: | |
573 case 1200: | |
574 break; | |
575 default: | |
576 return -1; | |
577 } | |
578 s->bit_rate = bit_rate; | |
579 s->negotiated_bit_rate = 1200; | |
580 if (v22bis_tx_restart(s)) | |
581 return -1; | |
582 return v22bis_rx_restart(s); | |
583 } | |
584 /*- End of function --------------------------------------------------------*/ | |
585 | |
586 SPAN_DECLARE(int) v22bis_request_retrain(v22bis_state_t *s, int bit_rate) | |
587 { | |
588 /* TODO: support bit rate switching */ | |
589 switch (bit_rate) | |
590 { | |
591 case 2400: | |
592 case 1200: | |
593 break; | |
594 default: | |
595 return -1; | |
596 } | |
597 /* TODO: support bit rate changes */ | |
598 /* Retrain is only valid when we are normal operation at 2400bps */ | |
599 if (s->rx.training != V22BIS_RX_TRAINING_STAGE_NORMAL_OPERATION | |
600 || | |
601 s->tx.training != V22BIS_TX_TRAINING_STAGE_NORMAL_OPERATION | |
602 || | |
603 s->negotiated_bit_rate != 2400) | |
604 { | |
605 return -1; | |
606 } | |
607 /* Send things back into the training process at the appropriate point. | |
608 The far end should detect the S1 signal, and reciprocate. */ | |
609 span_log(&s->logging, SPAN_LOG_FLOW, "+++ Initiating a retrain\n"); | |
610 s->rx.pattern_repeats = 0; | |
611 s->rx.training_count = 0; | |
612 s->rx.training = V22BIS_RX_TRAINING_STAGE_SCRAMBLED_ONES_AT_1200; | |
613 s->tx.training_count = 0; | |
614 s->tx.training = V22BIS_TX_TRAINING_STAGE_U0011; | |
615 v22bis_equalizer_coefficient_reset(s); | |
616 v22bis_report_status_change(s, SIG_STATUS_MODEM_RETRAIN_OCCURRED); | |
617 return 0; | |
618 } | |
619 /*- End of function --------------------------------------------------------*/ | |
620 | |
621 SPAN_DECLARE(int) v22bis_remote_loopback(v22bis_state_t *s, int enable) | |
622 { | |
623 /* TODO: */ | |
624 return -1; | |
625 } | |
626 /*- End of function --------------------------------------------------------*/ | |
627 | |
628 SPAN_DECLARE(int) v22bis_current_bit_rate(v22bis_state_t *s) | |
629 { | |
630 return s->negotiated_bit_rate; | |
631 } | |
632 /*- End of function --------------------------------------------------------*/ | |
633 | |
634 SPAN_DECLARE(v22bis_state_t *) v22bis_init(v22bis_state_t *s, | |
635 int bit_rate, | |
636 int guard, | |
637 int calling_party, | |
638 get_bit_func_t get_bit, | |
639 void *get_bit_user_data, | |
640 put_bit_func_t put_bit, | |
641 void *put_bit_user_data) | |
642 { | |
643 switch (bit_rate) | |
644 { | |
645 case 2400: | |
646 case 1200: | |
647 break; | |
648 default: | |
649 return NULL; | |
650 } | |
651 if (s == NULL) | |
652 { | |
653 if ((s = (v22bis_state_t *) malloc(sizeof(*s))) == NULL) | |
654 return NULL; | |
655 } | |
656 memset(s, 0, sizeof(*s)); | |
657 span_log_init(&s->logging, SPAN_LOG_NONE, NULL); | |
658 span_log_set_protocol(&s->logging, "V.22bis"); | |
659 s->bit_rate = bit_rate; | |
660 s->calling_party = calling_party; | |
661 | |
662 s->get_bit = get_bit; | |
663 s->get_bit_user_data = get_bit_user_data; | |
664 s->put_bit = put_bit; | |
665 s->put_bit_user_data = put_bit_user_data; | |
666 | |
667 if (s->calling_party) | |
668 { | |
669 s->tx.carrier_phase_rate = dds_phase_ratef(1200.0f); | |
670 } | |
671 else | |
672 { | |
673 s->tx.carrier_phase_rate = dds_phase_ratef(2400.0f); | |
674 switch (guard) | |
675 { | |
676 case V22BIS_GUARD_TONE_550HZ: | |
677 s->tx.guard_phase_rate = dds_phase_ratef(550.0f); | |
678 break; | |
679 case V22BIS_GUARD_TONE_1800HZ: | |
680 s->tx.guard_phase_rate = dds_phase_ratef(1800.0f); | |
681 break; | |
682 default: | |
683 s->tx.guard_phase_rate = 0; | |
684 break; | |
685 } | |
686 } | |
687 v22bis_tx_power(s, -14.0f); | |
688 v22bis_restart(s, s->bit_rate); | |
689 return s; | |
690 } | |
691 /*- End of function --------------------------------------------------------*/ | |
692 | |
693 SPAN_DECLARE(int) v22bis_release(v22bis_state_t *s) | |
694 { | |
695 return 0; | |
696 } | |
697 /*- End of function --------------------------------------------------------*/ | |
698 | |
699 SPAN_DECLARE(int) v22bis_free(v22bis_state_t *s) | |
700 { | |
701 free(s); | |
702 return 0; | |
703 } | |
704 /*- End of function --------------------------------------------------------*/ | |
705 /*- End of file ------------------------------------------------------------*/ |