Mercurial > hg > audiostuff
diff spandsp-0.0.6pre17/src/fsk.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/spandsp-0.0.6pre17/src/fsk.c Fri Jun 25 15:50:58 2010 +0200 @@ -0,0 +1,578 @@ +/* + * SpanDSP - a series of DSP components for telephony + * + * fsk.c - FSK modem transmit and receive parts + * + * Written by Steve Underwood <steveu@coppice.org> + * + * Copyright (C) 2003 Steve Underwood + * + * All rights reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License version 2.1, + * as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * $Id: fsk.c,v 1.60 2009/11/02 13:25:20 steveu Exp $ + */ + +/*! \file */ + +#if defined(HAVE_CONFIG_H) +#include "config.h" +#endif + +#include <stdlib.h> +#include <inttypes.h> +#include <string.h> +#if defined(HAVE_TGMATH_H) +#include <tgmath.h> +#endif +#if defined(HAVE_MATH_H) +#include <math.h> +#endif +#include "floating_fudge.h" +#include <assert.h> + +#include "spandsp/telephony.h" +#include "spandsp/complex.h" +#include "spandsp/dds.h" +#include "spandsp/power_meter.h" +#include "spandsp/async.h" +#include "spandsp/fsk.h" + +#include "spandsp/private/fsk.h" + +const fsk_spec_t preset_fsk_specs[] = +{ + { + "V21 ch 1", + 1080 + 100, + 1080 - 100, + -14, + -30, + 300*100 + }, + { + "V21 ch 2", + 1750 + 100, + 1750 - 100, + -14, + -30, + 300*100 + }, + { + "V23 ch 1", + 2100, + 1300, + -14, + -30, + 1200*100 + }, + { + "V23 ch 2", + 450, + 390, + -14, + -30, + 75*100 + }, + { + "Bell103 ch 1", + 2125 - 100, + 2125 + 100, + -14, + -30, + 300*100 + }, + { + "Bell103 ch 2", + 1170 - 100, + 1170 + 100, + -14, + -30, + 300*100 + }, + { + "Bell202", + 2200, + 1200, + -14, + -30, + 1200*100 + }, + { + "Weitbrecht 45.45", /* Used for TDD (Telecoms Device for the Deaf) */ + 1800, + 1400, + -14, + -30, + 4545 + }, + { + "Weitbrecht 50", /* Used for TDD (Telecoms Device for the Deaf) */ + 1800, + 1400, + -14, + -30, + 5000 + } +}; + +SPAN_DECLARE(int) fsk_tx_restart(fsk_tx_state_t *s, const fsk_spec_t *spec) +{ + s->baud_rate = spec->baud_rate; + s->phase_rates[0] = dds_phase_rate((float) spec->freq_zero); + s->phase_rates[1] = dds_phase_rate((float) spec->freq_one); + s->scaling = dds_scaling_dbm0((float) spec->tx_level); + /* Initialise fractional sample baud generation. */ + s->phase_acc = 0; + s->baud_frac = 0; + s->current_phase_rate = s->phase_rates[1]; + + s->shutdown = FALSE; + return 0; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(fsk_tx_state_t *) fsk_tx_init(fsk_tx_state_t *s, + const fsk_spec_t *spec, + get_bit_func_t get_bit, + void *user_data) +{ + if (s == NULL) + { + if ((s = (fsk_tx_state_t *) malloc(sizeof(*s))) == NULL) + return NULL; + } + memset(s, 0, sizeof(*s)); + + s->get_bit = get_bit; + s->get_bit_user_data = user_data; + fsk_tx_restart(s, spec); + return s; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(int) fsk_tx_release(fsk_tx_state_t *s) +{ + return 0; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(int) fsk_tx_free(fsk_tx_state_t *s) +{ + free(s); + return 0; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE_NONSTD(int) fsk_tx(fsk_tx_state_t *s, int16_t amp[], int len) +{ + int sample; + int bit; + + if (s->shutdown) + return 0; + /* Make the transitions between 0 and 1 phase coherent, but instantaneous + jumps. There is currently no interpolation for bauds that end mid-sample. + Mainstream users will not care. Some specialist users might have a problem + with them, if they care about accurate transition timing. */ + for (sample = 0; sample < len; sample++) + { + if ((s->baud_frac += s->baud_rate) >= SAMPLE_RATE*100) + { + s->baud_frac -= SAMPLE_RATE*100; + if ((bit = s->get_bit(s->get_bit_user_data)) == SIG_STATUS_END_OF_DATA) + { + if (s->status_handler) + s->status_handler(s->status_user_data, SIG_STATUS_END_OF_DATA); + if (s->status_handler) + s->status_handler(s->status_user_data, SIG_STATUS_SHUTDOWN_COMPLETE); + s->shutdown = TRUE; + break; + } + s->current_phase_rate = s->phase_rates[bit & 1]; + } + amp[sample] = dds_mod(&(s->phase_acc), s->current_phase_rate, s->scaling, 0); + } + return sample; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(void) fsk_tx_power(fsk_tx_state_t *s, float power) +{ + s->scaling = dds_scaling_dbm0(power); +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(void) fsk_tx_set_get_bit(fsk_tx_state_t *s, get_bit_func_t get_bit, void *user_data) +{ + s->get_bit = get_bit; + s->get_bit_user_data = user_data; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(void) fsk_tx_set_modem_status_handler(fsk_tx_state_t *s, modem_tx_status_func_t handler, void *user_data) +{ + s->status_handler = handler; + s->status_user_data = user_data; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(void) fsk_rx_signal_cutoff(fsk_rx_state_t *s, float cutoff) +{ + /* The 6.04 allows for the gain of the DC blocker */ + s->carrier_on_power = (int32_t) (power_meter_level_dbm0(cutoff + 2.5f - 6.04f)); + s->carrier_off_power = (int32_t) (power_meter_level_dbm0(cutoff - 2.5f - 6.04f)); +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(float) fsk_rx_signal_power(fsk_rx_state_t *s) +{ + return power_meter_current_dbm0(&s->power); +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(void) fsk_rx_set_put_bit(fsk_rx_state_t *s, put_bit_func_t put_bit, void *user_data) +{ + s->put_bit = put_bit; + s->put_bit_user_data = user_data; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(void) fsk_rx_set_modem_status_handler(fsk_rx_state_t *s, modem_tx_status_func_t handler, void *user_data) +{ + s->status_handler = handler; + s->status_user_data = user_data; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(int) fsk_rx_restart(fsk_rx_state_t *s, const fsk_spec_t *spec, int framing_mode) +{ + int chop; + + s->baud_rate = spec->baud_rate; + s->framing_mode = framing_mode; + fsk_rx_signal_cutoff(s, (float) spec->min_level); + + /* Detect by correlating against the tones we want, over a period + of one baud. The correlation must be quadrature. */ + + /* First we need the quadrature tone generators to correlate + against. */ + s->phase_rate[0] = dds_phase_rate((float) spec->freq_zero); + s->phase_rate[1] = dds_phase_rate((float) spec->freq_one); + s->phase_acc[0] = 0; + s->phase_acc[1] = 0; + s->last_sample = 0; + + /* The correlation should be over one baud. */ + s->correlation_span = SAMPLE_RATE*100/spec->baud_rate; + /* But limit it for very slow baud rates, so we do not overflow our + buffer. */ + if (s->correlation_span > FSK_MAX_WINDOW_LEN) + s->correlation_span = FSK_MAX_WINDOW_LEN; + + /* We need to scale, to avoid overflow in the correlation. */ + s->scaling_shift = 0; + chop = s->correlation_span; + while (chop != 0) + { + s->scaling_shift++; + chop >>= 1; + } + + /* Initialise the baud/bit rate tracking. */ + s->baud_phase = 0; + s->frame_state = 0; + s->frame_bits = 0; + s->last_bit = 0; + + /* Initialise a power detector, so sense when a signal is present. */ + power_meter_init(&(s->power), 4); + s->signal_present = 0; + return 0; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(fsk_rx_state_t *) fsk_rx_init(fsk_rx_state_t *s, + const fsk_spec_t *spec, + int framing_mode, + put_bit_func_t put_bit, + void *user_data) +{ + if (s == NULL) + { + if ((s = (fsk_rx_state_t *) malloc(sizeof(*s))) == NULL) + return NULL; + } + memset(s, 0, sizeof(*s)); + + s->put_bit = put_bit; + s->put_bit_user_data = user_data; + fsk_rx_restart(s, spec, framing_mode); + return s; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(int) fsk_rx_release(fsk_rx_state_t *s) +{ + return 0; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(int) fsk_rx_free(fsk_rx_state_t *s) +{ + free(s); + return 0; +} +/*- End of function --------------------------------------------------------*/ + +static void report_status_change(fsk_rx_state_t *s, int status) +{ + if (s->status_handler) + s->status_handler(s->status_user_data, status); + else if (s->put_bit) + s->put_bit(s->put_bit_user_data, status); +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE_NONSTD(int) fsk_rx(fsk_rx_state_t *s, const int16_t *amp, int len) +{ + int buf_ptr; + int baudstate; + int i; + int j; + int16_t x; + int32_t dot; + int32_t sum[2]; + int32_t power; + complexi_t ph; + + buf_ptr = s->buf_ptr; + + for (i = 0; i < len; i++) + { + /* The *totally* asynchronous character to character behaviour of these + modems, when carrying async. data, seems to force a sample by sample + approach. */ + for (j = 0; j < 2; j++) + { + s->dot[j].re -= s->window[j][buf_ptr].re; + s->dot[j].im -= s->window[j][buf_ptr].im; + + ph = dds_complexi(&(s->phase_acc[j]), s->phase_rate[j]); + s->window[j][buf_ptr].re = (ph.re*amp[i]) >> s->scaling_shift; + s->window[j][buf_ptr].im = (ph.im*amp[i]) >> s->scaling_shift; + + s->dot[j].re += s->window[j][buf_ptr].re; + s->dot[j].im += s->window[j][buf_ptr].im; + + dot = s->dot[j].re >> 15; + sum[j] = dot*dot; + dot = s->dot[j].im >> 15; + sum[j] += dot*dot; + } + /* If there isn't much signal, don't demodulate - it will only produce + useless junk results. */ + /* There should be no DC in the signal, but sometimes there is. + We need to measure the power with the DC blocked, but not using + a slow to respond DC blocker. Use the most elementary HPF. */ + x = amp[i] >> 1; + power = power_meter_update(&(s->power), x - s->last_sample); + s->last_sample = x; + if (s->signal_present) + { + /* Look for power below turn-off threshold to turn the carrier off */ + if (power < s->carrier_off_power) + { + if (--s->signal_present <= 0) + { + /* Count down a short delay, to ensure we push the last + few bits through the filters before stopping. */ + report_status_change(s, SIG_STATUS_CARRIER_DOWN); + s->baud_phase = 0; + continue; + } + } + } + else + { + /* Look for power exceeding turn-on threshold to turn the carrier on */ + if (power < s->carrier_on_power) + { + s->baud_phase = 0; + continue; + } + if (s->baud_phase < (s->correlation_span >> 1) - 30) + { + s->baud_phase++; + continue; + } + s->signal_present = 1; + /* Initialise the baud/bit rate tracking. */ + s->baud_phase = 0; + s->frame_state = 0; + s->frame_bits = 0; + s->last_bit = 0; + report_status_change(s, SIG_STATUS_CARRIER_UP); + } + /* Non-coherent FSK demodulation by correlation with the target tones + over a one baud interval. The slow V.xx specs. are too open ended + to allow anything fancier to be used. The dot products are calculated + using a sliding window approach, so the compute load is not that great. */ + + baudstate = (sum[0] < sum[1]); + switch (s->framing_mode) + { + case FSK_FRAME_MODE_SYNC: + /* Synchronous serial operation - e.g. for HDLC */ + if (s->last_bit != baudstate) + { + /* On a transition we check our timing */ + s->last_bit = baudstate; + /* For synchronous use (e.g. HDLC channels in FAX modems), nudge + the baud phase gently, trying to keep it centred on the bauds. */ + if (s->baud_phase < (SAMPLE_RATE*50)) + s->baud_phase += (s->baud_rate >> 3); + else + s->baud_phase -= (s->baud_rate >> 3); + } + if ((s->baud_phase += s->baud_rate) >= (SAMPLE_RATE*100)) + { + /* We should be in the middle of a baud now, so report the current + state as the next bit */ + s->baud_phase -= (SAMPLE_RATE*100); + s->put_bit(s->put_bit_user_data, baudstate); + } + break; + case FSK_FRAME_MODE_ASYNC: + /* Fully asynchronous mode */ + if (s->last_bit != baudstate) + { + /* On a transition we check our timing */ + s->last_bit = baudstate; + /* For async. operation, believe transitions completely, and + sample appropriately. This allows instant start on the first + transition. */ + /* We must now be about half way to a sampling point. We do not do + any fractional sample estimation of the transitions, so this is + the most accurate baud alignment we can do. */ + s->baud_phase = SAMPLE_RATE*50; + } + if ((s->baud_phase += s->baud_rate) >= (SAMPLE_RATE*100)) + { + /* We should be in the middle of a baud now, so report the current + state as the next bit */ + s->baud_phase -= (SAMPLE_RATE*100); + s->put_bit(s->put_bit_user_data, baudstate); + } + break; + default: + /* Gather the specified number of bits, with robust checking to ensure reasonable voice immunity. + The first bit should be a start bit (0), and the last bit should be a stop bit (1) */ + if (s->frame_state == 0) + { + /* Looking for the start of a zero bit, which hopefully the start of a start bit */ + if (baudstate == 0) + { + s->baud_phase = SAMPLE_RATE*(100 - 40)/2; + s->frame_state = -1; + s->frame_bits = 0; + s->last_bit = -1; + } + } + else if (s->frame_state == -1) + { + /* Look for a continuous zero from the start of the start bit until + beyond the middle */ + if (baudstate != 0) + { + /* If we aren't looking at a stable start bit, restart */ + s->frame_state = 0; + } + else + { + s->baud_phase += s->baud_rate; + if (s->baud_phase >= SAMPLE_RATE*100) + { + s->frame_state = 1; + s->last_bit = baudstate; + } + } + } + else + { + s->baud_phase += s->baud_rate; + if (s->baud_phase >= SAMPLE_RATE*(100 - 40)) + { + if (s->last_bit < 0) + s->last_bit = baudstate; + /* Look for the bit being consistent over the central 20% of the bit time. */ + if (s->last_bit != baudstate) + { + s->frame_state = 0; + } + else if (s->baud_phase >= SAMPLE_RATE*100) + { + /* We should be in the middle of a baud now, so report the current + state as the next bit */ + if (s->last_bit == baudstate) + { + s->frame_bits |= (baudstate << s->framing_mode); + s->frame_bits >>= 1; + s->baud_phase -= (SAMPLE_RATE*100); + if (++s->frame_state > s->framing_mode) + { + /* Check we have a stop bit */ + if (baudstate == 1) + { + /* Check we have a start bit */ + if ((s->frame_bits & 1) == 0) + { + /* Drop the start bit, and pass the rest back */ + s->frame_bits >>= 1; + s->put_bit(s->put_bit_user_data, s->frame_bits); + } + } + s->frame_state = 0; + } + } + else + { + s->frame_state = 0; + } + s->last_bit = -1; + } + } + } + break; + } + if (++buf_ptr >= s->correlation_span) + buf_ptr = 0; + } + s->buf_ptr = buf_ptr; + return 0; +} +/*- End of function --------------------------------------------------------*/ + +SPAN_DECLARE(int) fsk_rx_fillin(fsk_rx_state_t *s, int len) +{ + /* The valid choice here is probably to do nothing. We don't change state + (i.e carrier on<->carrier off), and we'll just output less bits than we + should. */ + /* TODO: Advance the symbol phase the appropriate amount */ + return 0; +} +/*- End of function --------------------------------------------------------*/ +/*- End of file ------------------------------------------------------------*/