diff spandsp-0.0.3/spandsp-0.0.3/src/spandsp/g711.h @ 5:f762bf195c4b

import spandsp-0.0.3
author Peter Meerwald <pmeerw@cosy.sbg.ac.at>
date Fri, 25 Jun 2010 16:00:21 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/spandsp-0.0.3/spandsp-0.0.3/src/spandsp/g711.h	Fri Jun 25 16:00:21 2010 +0200
@@ -0,0 +1,254 @@
+/*
+ * SpanDSP - a series of DSP components for telephony
+ *
+ * g711.h - In line A-law and u-law conversion routines
+ *
+ * Written by Steve Underwood <steveu@coppice.org>
+ *
+ * Copyright (C) 2001 Steve Underwood
+ *
+ * All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * $Id: g711.h,v 1.3 2006/10/24 13:45:28 steveu Exp $
+ */
+
+/*! \file */
+
+/*! \page g711_page A-law and mu-law handling
+Lookup tables for A-law and u-law look attractive, until you consider the impact
+on the CPU cache. If it causes a substantial area of your processor cache to get
+hit too often, cache sloshing will severely slow things down. The main reason
+these routines are slow in C, is the lack of direct access to the CPU's "find
+the first 1" instruction. A little in-line assembler fixes that, and the
+conversion routines can be faster than lookup tables, in most real world usage.
+A "find the first 1" instruction is available on most modern CPUs, and is a
+much underused feature. 
+
+If an assembly language method of bit searching is not available, these routines
+revert to a method that can be a little slow, so the cache thrashing might not
+seem so bad :(
+
+Feel free to submit patches to add fast "find the first 1" support for your own
+favourite processor.
+
+Look up tables are used for transcoding between A-law and u-law, since it is
+difficult to achieve the precise transcoding procedure laid down in the G.711
+specification by other means.
+*/
+
+#if !defined(_G711_H_)
+#define _G711_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* N.B. It is tempting to use look-up tables for A-law and u-law conversion.
+ *      However, you should consider the cache footprint.
+ *
+ *      A 64K byte table for linear to x-law and a 512 byte table for x-law to
+ *      linear sound like peanuts these days, and shouldn't an array lookup be
+ *      real fast? No! When the cache sloshes as badly as this one will, a tight
+ *      calculation may be better. The messiest part is normally finding the
+ *      segment, but a little inline assembly can fix that on an i386, x86_64 and
+ *      many other modern processors.
+ */
+ 
+/*
+ * Mu-law is basically as follows:
+ *
+ *      Biased Linear Input Code        Compressed Code
+ *      ------------------------        ---------------
+ *      00000001wxyza                   000wxyz
+ *      0000001wxyzab                   001wxyz
+ *      000001wxyzabc                   010wxyz
+ *      00001wxyzabcd                   011wxyz
+ *      0001wxyzabcde                   100wxyz
+ *      001wxyzabcdef                   101wxyz
+ *      01wxyzabcdefg                   110wxyz
+ *      1wxyzabcdefgh                   111wxyz
+ *
+ * Each biased linear code has a leading 1 which identifies the segment
+ * number. The value of the segment number is equal to 7 minus the number
+ * of leading 0's. The quantization interval is directly available as the
+ * four bits wxyz.  * The trailing bits (a - h) are ignored.
+ *
+ * Ordinarily the complement of the resulting code word is used for
+ * transmission, and so the code word is complemented before it is returned.
+ *
+ * For further information see John C. Bellamy's Digital Telephony, 1982,
+ * John Wiley & Sons, pps 98-111 and 472-476.
+ */
+
+//#define ULAW_ZEROTRAP                 /* turn on the trap as per the MIL-STD */
+#define ULAW_BIAS        0x84           /* Bias for linear code. */
+
+/*! \brief Encode a linear sample to u-law
+    \param linear The sample to encode.
+    \return The u-law value.
+*/
+static __inline__ uint8_t linear_to_ulaw(int linear)
+{
+    uint8_t u_val;
+    int mask;
+    int seg;
+
+    /* Get the sign and the magnitude of the value. */
+    if (linear < 0)
+    {
+        linear = ULAW_BIAS - linear;
+        mask = 0x7F;
+    }
+    else
+    {
+        linear = ULAW_BIAS + linear;
+        mask = 0xFF;
+    }
+
+    seg = top_bit(linear | 0xFF) - 7;
+
+    /*
+     * Combine the sign, segment, quantization bits,
+     * and complement the code word.
+     */
+    if (seg >= 8)
+        u_val = (uint8_t) (0x7F ^ mask);
+    else
+        u_val = (uint8_t) (((seg << 4) | ((linear >> (seg + 3)) & 0xF)) ^ mask);
+#ifdef ULAW_ZEROTRAP
+    /* Optional ITU trap */
+    if (u_val == 0)
+        u_val = 0x02;
+#endif
+    return  u_val;
+}
+/*- End of function --------------------------------------------------------*/
+
+/*! \brief Decode an u-law sample to a linear value.
+    \param ulaw The u-law sample to decode.
+    \return The linear value.
+*/
+static __inline__ int16_t ulaw_to_linear(uint8_t ulaw)
+{
+    int t;
+    
+    /* Complement to obtain normal u-law value. */
+    ulaw = ~ulaw;
+    /*
+     * Extract and bias the quantization bits. Then
+     * shift up by the segment number and subtract out the bias.
+     */
+    t = (((ulaw & 0x0F) << 3) + ULAW_BIAS) << (((int) ulaw & 0x70) >> 4);
+    return  (int16_t) ((ulaw & 0x80)  ?  (ULAW_BIAS - t)  :  (t - ULAW_BIAS));
+}
+/*- End of function --------------------------------------------------------*/
+
+/*
+ * A-law is basically as follows:
+ *
+ *      Linear Input Code        Compressed Code
+ *      -----------------        ---------------
+ *      0000000wxyza             000wxyz
+ *      0000001wxyza             001wxyz
+ *      000001wxyzab             010wxyz
+ *      00001wxyzabc             011wxyz
+ *      0001wxyzabcd             100wxyz
+ *      001wxyzabcde             101wxyz
+ *      01wxyzabcdef             110wxyz
+ *      1wxyzabcdefg             111wxyz
+ *
+ * For further information see John C. Bellamy's Digital Telephony, 1982,
+ * John Wiley & Sons, pps 98-111 and 472-476.
+ */
+
+#define ALAW_AMI_MASK       0x55
+
+/*! \brief Encode a linear sample to A-law
+    \param linear The sample to encode.
+    \return The A-law value.
+*/
+static __inline__ uint8_t linear_to_alaw(int linear)
+{
+    int mask;
+    int seg;
+    
+    if (linear >= 0)
+    {
+        /* Sign (bit 7) bit = 1 */
+        mask = ALAW_AMI_MASK | 0x80;
+    }
+    else
+    {
+        /* Sign (bit 7) bit = 0 */
+        mask = ALAW_AMI_MASK;
+        linear = -linear - 8;
+    }
+
+    /* Convert the scaled magnitude to segment number. */
+    seg = top_bit(linear | 0xFF) - 7;
+    if (seg >= 8)
+    {
+        if (linear >= 0)
+        {
+            /* Out of range. Return maximum value. */
+            return (uint8_t) (0x7F ^ mask);
+        }
+        /* We must be just a tiny step below zero */
+        return (uint8_t) (0x00 ^ mask);
+    }
+    /* Combine the sign, segment, and quantization bits. */
+    return (uint8_t) (((seg << 4) | ((linear >> ((seg)  ?  (seg + 3)  :  4)) & 0x0F)) ^ mask);
+}
+/*- End of function --------------------------------------------------------*/
+
+/*! \brief Decode an A-law sample to a linear value.
+    \param alaw The A-law sample to decode.
+    \return The linear value.
+*/
+static __inline__ int16_t alaw_to_linear(uint8_t alaw)
+{
+    int i;
+    int seg;
+
+    alaw ^= ALAW_AMI_MASK;
+    i = ((alaw & 0x0F) << 4);
+    seg = (((int) alaw & 0x70) >> 4);
+    if (seg)
+        i = (i + 0x108) << (seg - 1);
+    else
+        i += 8;
+    return (int16_t) ((alaw & 0x80)  ?  i  :  -i);
+}
+/*- End of function --------------------------------------------------------*/
+
+/*! \brief Transcode from A-law to u-law, using the procedure defined in G.711.
+    \param alaw The A-law sample to transcode.
+    \return The best matching u-law value.
+*/
+uint8_t alaw_to_ulaw(uint8_t alaw);
+
+/*! \brief Transcode from u-law to A-law, using the procedure defined in G.711.
+    \param alaw The u-law sample to transcode.
+    \return The best matching A-law value.
+*/
+uint8_t ulaw_to_alaw(uint8_t ulaw);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+/*- End of file ------------------------------------------------------------*/

Repositories maintained by Peter Meerwald, pmeerw@pmeerw.net.