view intercom/aec.h @ 4:26cd8f1ef0b1

import spandsp-0.0.6pre17
author Peter Meerwald <pmeerw@cosy.sbg.ac.at>
date Fri, 25 Jun 2010 15:50:58 +0200
parents c6c5a16ce2f2
children
line wrap: on
line source

/* aec.h
 *
 * Copyright (C) DFS Deutsche Flugsicherung (2004, 2005). 
 * All Rights Reserved.
 * Author: Andre Adrian
 *
 * Acoustic Echo Cancellation Leaky NLMS-pw algorithm
 *
 * Version 0.3 filter created with www.dsptutor.freeuk.com
 * Version 0.3.1 Allow change of stability parameter delta
 * Version 0.4 Leaky Normalized LMS - pre whitening algorithm
 */

#ifndef _AEC_H                  /* include only once */

// use double if your CPU does software-emulation of float
typedef float REAL;

/* dB Values */
const REAL M0dB = 1.0f;
const REAL M3dB = 0.71f;
const REAL M6dB = 0.50f;
const REAL M9dB = 0.35f;
const REAL M12dB = 0.25f;
const REAL M18dB = 0.125f;
const REAL M24dB = 0.063f;

/* dB values for 16bit PCM */
/* MxdB_PCM = 32767 * 10 ^(x / 20) */
const REAL M10dB_PCM = 10362.0f;
const REAL M20dB_PCM = 3277.0f;
const REAL M25dB_PCM = 1843.0f;
const REAL M30dB_PCM = 1026.0f;
const REAL M35dB_PCM = 583.0f;
const REAL M40dB_PCM = 328.0f;
const REAL M45dB_PCM = 184.0f;
const REAL M50dB_PCM = 104.0f;
const REAL M55dB_PCM = 58.0f;
const REAL M60dB_PCM = 33.0f;
const REAL M65dB_PCM = 18.0f;
const REAL M70dB_PCM = 10.0f;
const REAL M75dB_PCM = 6.0f;
const REAL M80dB_PCM = 3.0f;
const REAL M85dB_PCM = 2.0f;
const REAL M90dB_PCM = 1.0f;

const REAL MAXPCM = 32767.0f;

/* Design constants (Change to fine tune the algorithms */

/* The following values are for hardware AEC and studio quality 
 * microphone */

/* NLMS filter length in taps (samples). A longer filter length gives
 * better Echo Cancellation, but maybe slower convergence speed and
 * needs more CPU power (Order of NLMS is linear) */
#define NLMS_LEN  (100*WIDEB*8)

/* Vector w visualization length in taps (samples).
 * Must match argv value for wdisplay.tcl */
#define DUMP_LEN  (40*WIDEB*8)

/* minimum energy in xf. Range: M70dB_PCM to M50dB_PCM. Should be equal
 * to microphone ambient Noise level */
const REAL NoiseFloor = M55dB_PCM;

/* Leaky hangover in taps. 
 */
const int Thold = 60 * WIDEB * 8;

// Adrian soft decision DTD 
// left point. X is ratio, Y is stepsize
const float STEPX1 = 1.0, STEPY1 = 1.0;
// right point. STEPX2=2.0 is good double talk, 3.0 is good single talk.
const float STEPX2 = 2.5, STEPY2 = 0;
const float ALPHAFAST = 1.0f / 100.0f;
const float ALPHASLOW = 1.0f / 20000.0f;



/* Ageing multiplier for LMS memory vector w */
const REAL Leaky = 0.9999f;

/* Double Talk Detector Speaker/Microphone Threshold. Range <=1
 * Large value (M0dB) is good for Single-Talk Echo cancellation, 
 * small value (M12dB) is good for Doulbe-Talk AEC */
const REAL GeigelThreshold = M6dB;

/* for Non Linear Processor. Range >0 to 1. Large value (M0dB) is good
 * for Double-Talk, small value (M12dB) is good for Single-Talk */
const REAL NLPAttenuation = M12dB;

/* Below this line there are no more design constants */


/* Exponential Smoothing or IIR Infinite Impulse Response Filter */
class IIR_HP {
  REAL x;

public:
   IIR_HP() {
    x = 0.0f;
  }
  
  REAL highpass(REAL in) {
    const REAL a0 = 0.01f;      /* controls Transfer Frequency */
    /* Highpass = Signal - Lowpass. Lowpass = Exponential Smoothing */
    x += a0 * (in - x);
    return in - x;
  };
};

#if WIDEB==1
/* 17 taps FIR Finite Impulse Response filter
 * Coefficients calculated with
 * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
 */
class FIR_HP_300Hz {
  REAL z[18];

public:
   FIR_HP_300Hz() {
    memset(this, 0, sizeof(FIR_HP_300Hz));
  }
  
  REAL highpass(REAL in) {
    const REAL a[18] = {
    // Kaiser Window FIR Filter, Filter type: High pass
    // Passband: 300.0 - 4000.0 Hz, Order: 16
    // Transition band: 75.0 Hz, Stopband attenuation: 10.0 dB
    -0.034870606, -0.039650206, -0.044063766, -0.04800318, 
    -0.051370874, -0.054082647, -0.056070227, -0.057283327, 
    0.8214126, -0.057283327, -0.056070227, -0.054082647, 
    -0.051370874, -0.04800318, -0.044063766, -0.039650206, 
    -0.034870606, 0.0   
    };
    memmove(z + 1, z, 17 * sizeof(REAL));
    z[0] = in;
    REAL sum0 = 0.0, sum1 = 0.0;
    int j;

    for (j = 0; j < 18; j += 2) {
      // optimize: partial loop unrolling
      sum0 += a[j] * z[j];
      sum1 += a[j + 1] * z[j + 1];
    }
    return sum0 + sum1;
  }
};

#else

/* 35 taps FIR Finite Impulse Response filter
 * Passband 150Hz to 4kHz for 8kHz sample rate, 300Hz to 8kHz for 16kHz
 * sample rate.
 * Coefficients calculated with
 * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
 */
class FIR_HP_300Hz {
  REAL z[36];

public:
   FIR_HP_300Hz() {
    memset(this, 0, sizeof(FIR_HP_300Hz));
  }
  
  REAL highpass(REAL in) {
    const REAL a[36] = {
      // Kaiser Window FIR Filter, Filter type: High pass
      // Passband: 150.0 - 4000.0 Hz, Order: 34
      // Transition band: 34.0 Hz, Stopband attenuation: 10.0 dB
      -0.016165324, -0.017454365, -0.01871232, -0.019931411, 
      -0.021104068, -0.022222936, -0.02328091, -0.024271343, 
      -0.025187887, -0.02602462, -0.026776174, -0.027437767, 
      -0.028004972, -0.028474221, -0.028842418, -0.029107114, 
      -0.02926664, 0.8524841, -0.02926664, -0.029107114, 
      -0.028842418, -0.028474221, -0.028004972, -0.027437767, 
      -0.026776174, -0.02602462, -0.025187887, -0.024271343, 
      -0.02328091, -0.022222936, -0.021104068, -0.019931411, 
      -0.01871232, -0.017454365, -0.016165324, 0.0    
    };
    memmove(z + 1, z, 35 * sizeof(REAL));
    z[0] = in;
    REAL sum0 = 0.0, sum1 = 0.0;
    int j;

    for (j = 0; j < 36; j += 2) {
      // optimize: partial loop unrolling
      sum0 += a[j] * z[j];
      sum1 += a[j + 1] * z[j + 1];
    }
    return sum0 + sum1;
  }
};
#endif

/* Recursive single pole IIR Infinite Impulse response High-pass filter
 *
 * Reference: The Scientist and Engineer's Guide to Digital Processing
 *
 * 	output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
 *
 *      X  = exp(-2.0 * pi * Fc)
 *      A0 = (1 + X) / 2
 *      A1 = -(1 + X) / 2
 *      B1 = X
 *      Fc = cutoff freq / sample rate
 */
class IIR1 {
  REAL in0, out0;
  REAL a0, a1, b1;

public:
   IIR1() {
    memset(this, 0, sizeof(IIR1));
  }
  
  void init(REAL Fc) {
    b1 = expf(-2.0f * M_PI * Fc);
    a0 = (1.0f + b1) / 2.0f;
    a1 = -a0;
    in0 = 0.0f;
    out0 = 0.0f;
  }
  
  REAL highpass(REAL in) {
    REAL out = a0 * in + a1 * in0 + b1 * out0;
    in0 = in;
    out0 = out;
    return out;
  }
};


/* Recursive two pole IIR Infinite Impulse Response filter
 * Coefficients calculated with
 * http://www.dsptutor.freeuk.com/IIRFilterDesign/IIRFiltDes102.html
 */
class IIR2 {
  REAL x[2], y[2];

public:
   IIR2() {
    memset(this, 0, sizeof(IIR2));
  }
  
  REAL highpass(REAL in) {
    // Butterworth IIR filter, Filter type: HP
    // Passband: 2000 - 4000.0 Hz, Order: 2
    const REAL a[] = { 0.29289323f, -0.58578646f, 0.29289323f };
    const REAL b[] = { 1.3007072E-16f, 0.17157288f };
    REAL out =
      a[0] * in + a[1] * x[0] + a[2] * x[1] - b[0] * y[0] - b[1] * y[1];

    x[1] = x[0];
    x[0] = in;
    y[1] = y[0];
    y[0] = out;
    return out;
  }
};


// Extention in taps to reduce mem copies
#define NLMS_EXT  (10*8)

// block size in taps to optimize DTD calculation 
#define DTD_LEN   16


class AEC {
  // Time domain Filters
  IIR_HP acMic, acSpk;          // DC-level remove Highpass)
  FIR_HP_300Hz cutoff;          // 150Hz cut-off Highpass
  REAL gain;                    // Mic signal amplify
  IIR1 Fx, Fe;                  // pre-whitening Highpass for x, e

  // Adrian soft decision DTD (Double Talk Detector)
  REAL dfast, xfast;    
  REAL dslow, xslow;
  
  // NLMS-pw
  REAL x[NLMS_LEN + NLMS_EXT];  // tap delayed loudspeaker signal
  REAL xf[NLMS_LEN + NLMS_EXT]; // pre-whitening tap delayed signal
  REAL w[NLMS_LEN];             // tap weights
  int j;                        // optimize: less memory copies
  double dotp_xf_xf;            // double to avoid loss of precision
  float delta;                  // noise floor to stabilize NLMS

  // AES
  float aes_y2;                 // not in use!
  
  // w vector visualization
  REAL ws[DUMP_LEN];            // tap weights sums
  int fdwdisplay;               // TCP file descriptor
  int dumpcnt;                  // wdisplay output counter
  
/* Double-Talk Detector
 *
 * in d: microphone sample (PCM as REALing point value)
 * in x: loudspeaker sample (PCM as REALing point value)
 * return: from 0 for doubletalk to 1.0 for single talk
 */
  float dtd(REAL d, REAL x);

  void leaky();
  
/* Normalized Least Mean Square Algorithm pre-whitening (NLMS-pw)
 * The LMS algorithm was developed by Bernard Widrow
 * book: Haykin, Adaptive Filter Theory, 4. edition, Prentice Hall, 2002
 *
 * in d: microphone sample (16bit PCM value)
 * in x_: loudspeaker sample (16bit PCM value)
 * in stepsize: NLMS adaptation variable
 * return: echo cancelled microphone sample
 */
  REAL nlms_pw(REAL d, REAL x_, float stepsize);

public:
  // variables are public for visualization
  int hangover;
  float stepsize;
    AEC();

/* Acoustic Echo Cancellation and Suppression of one sample
 * in   d:  microphone signal with echo
 * in   x:  loudspeaker signal
 * return:  echo cancelled microphone signal
 */
  int doAEC(int d_, int x_);

  float getambient() {
    return dfast;
  };
  void setambient(float Min_xf) {
    dotp_xf_xf -= delta;  // subtract old delta
    delta = (NLMS_LEN-1) * Min_xf * Min_xf;
    dotp_xf_xf += delta;  // add new delta
  };
  void setgain(float gain_) {
    gain = gain_;
  };
  void openwdisplay();
  void setaes(float aes_y2_) {
    aes_y2 = aes_y2_;
  };
  double max_dotp_xf_xf(double u);
};

#define _AEC_H
#endif

Repositories maintained by Peter Meerwald, pmeerw@pmeerw.net.