Mercurial > hg > audiostuff
view intercom/ilbc/iCBSearch.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | 13be24d74cd2 |
children |
line wrap: on
line source
/****************************************************************** iLBC Speech Coder ANSI-C Source Code iCBSearch.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include <math.h> #include <string.h> #include "iLBC_define.h" #include "gainquant.h" #include "createCB.h" #include "filter.h" #include "constants.h" /*----------------------------------------------------------------* * Search routine for codebook encoding and gain quantization. *---------------------------------------------------------------*/ void iCBSearch(iLBC_Enc_Inst_t * iLBCenc_inst, /* (i) the encoder state structure */ int *index, /* (o) Codebook indices */ int *gain_index, /* (o) Gain quantization indices */ float *intarget, /* (i) Target vector for encoding */ float *mem, /* (i) Buffer for codebook construction */ int lMem, /* (i) Length of buffer */ int lTarget, /* (i) Length of vector */ int nStages, /* (i) Number of codebook stages */ float *weightDenum, /* (i) weighting filter coefficients */ float *weightState, /* (i) weighting filter state */ int block /* (i) the sub-block number */ ) { int i, j, icount, stage, best_index, range, counter; float max_measure, gain, measure, crossDot, ftmp; float gains[CB_NSTAGES]; float target[SUBL]; int base_index, sInd, eInd, base_size; int sIndAug = 0, eIndAug = 0; float buf[CB_MEML + SUBL + 2 * LPC_FILTERORDER]; float invenergy[CB_EXPAND * 128], energy[CB_EXPAND * 128]; float *pp, *ppi = 0, *ppo = 0, *ppe = 0; float cbvectors[CB_MEML]; float tene, cene, cvec[SUBL]; float aug_vec[SUBL]; memset(cvec, 0, SUBL * sizeof(float)); /* Determine size of codebook sections */ base_size = lMem - lTarget + 1; if (lTarget == SUBL) { base_size = lMem - lTarget + 1 + lTarget / 2; } /* setup buffer for weighting */ memcpy(buf, weightState, sizeof(float) * LPC_FILTERORDER); memcpy(buf + LPC_FILTERORDER, mem, lMem * sizeof(float)); memcpy(buf + LPC_FILTERORDER + lMem, intarget, lTarget * sizeof(float)); /* weighting */ AllPoleFilter(buf + LPC_FILTERORDER, weightDenum, lMem + lTarget, LPC_FILTERORDER); /* Construct the codebook and target needed */ memcpy(target, buf + LPC_FILTERORDER + lMem, lTarget * sizeof(float)); tene = 0.0; for (i = 0; i < lTarget; i++) { tene += target[i] * target[i]; } /* Prepare search over one more codebook section. This section is created by filtering the original buffer with a filter. */ filteredCBvecs(cbvectors, buf + LPC_FILTERORDER, lMem); /* The Main Loop over stages */ for (stage = 0; stage < nStages; stage++) { range = search_rangeTbl[block][stage]; /* initialize search measure */ max_measure = (float) -10000000.0; gain = (float) 0.0; best_index = 0; /* Compute cross dot product between the target and the CB memory */ crossDot = 0.0; pp = buf + LPC_FILTERORDER + lMem - lTarget; for (j = 0; j < lTarget; j++) { crossDot += target[j] * (*pp++); } if (stage == 0) { /* Calculate energy in the first block of 'lTarget' samples. */ ppe = energy; ppi = buf + LPC_FILTERORDER + lMem - lTarget - 1; ppo = buf + LPC_FILTERORDER + lMem - 1; *ppe = 0.0; pp = buf + LPC_FILTERORDER + lMem - lTarget; for (j = 0; j < lTarget; j++, pp++) { *ppe += (*pp) * (*pp); } if (*ppe > 0.0) { invenergy[0] = (float) 1.0 / (*ppe + EPS); } else { invenergy[0] = (float) 0.0; } ppe++; measure = (float) -10000000.0; if (crossDot > 0.0) { measure = crossDot * crossDot * invenergy[0]; } } else { measure = crossDot * crossDot * invenergy[0]; } /* check if measure is better */ ftmp = crossDot * invenergy[0]; if ((measure > max_measure) && (fabs(ftmp) < CB_MAXGAIN)) { best_index = 0; max_measure = measure; gain = ftmp; } /* loop over the main first codebook section, full search */ for (icount = 1; icount < range; icount++) { /* calculate measure */ crossDot = 0.0; pp = buf + LPC_FILTERORDER + lMem - lTarget - icount; for (j = 0; j < lTarget; j++) { crossDot += target[j] * (*pp++); } if (stage == 0) { *ppe++ = energy[icount - 1] + (*ppi) * (*ppi) - (*ppo) * (*ppo); ppo--; ppi--; if (energy[icount] > 0.0) { invenergy[icount] = (float) 1.0 / (energy[icount] + EPS); } else { invenergy[icount] = (float) 0.0; } measure = (float) -10000000.0; if (crossDot > 0.0) { measure = crossDot * crossDot * invenergy[icount]; } } else { measure = crossDot * crossDot * invenergy[icount]; } /* check if measure is better */ ftmp = crossDot * invenergy[icount]; if ((measure > max_measure) && (fabs(ftmp) < CB_MAXGAIN)) { best_index = icount; max_measure = measure; gain = ftmp; } } /* Loop over augmented part in the first codebook * section, full search. * The vectors are interpolated. */ if (lTarget == SUBL) { /* Search for best possible cb vector and compute the CB-vectors' energy. */ searchAugmentedCB(20, 39, stage, base_size - lTarget / 2, target, buf + LPC_FILTERORDER + lMem, &max_measure, &best_index, &gain, energy, invenergy); } /* set search range for following codebook sections */ base_index = best_index; /* unrestricted search */ if (CB_RESRANGE == -1) { sInd = 0; eInd = range - 1; sIndAug = 20; eIndAug = 39; } /* restricted search around best index from first codebook section */ else { /* Initialize search indices */ sIndAug = 0; eIndAug = 0; sInd = base_index - CB_RESRANGE / 2; eInd = sInd + CB_RESRANGE; if (lTarget == SUBL) { if (sInd < 0) { sIndAug = 40 + sInd; eIndAug = 39; sInd = 0; } else if (base_index < (base_size - 20)) { if (eInd > range) { sInd -= (eInd - range); eInd = range; } } else { /* base_index >= (base_size-20) */ if (sInd < (base_size - 20)) { sIndAug = 20; sInd = 0; eInd = 0; eIndAug = 19 + CB_RESRANGE; if (eIndAug > 39) { eInd = eIndAug - 39; eIndAug = 39; } } else { sIndAug = 20 + sInd - (base_size - 20); eIndAug = 39; sInd = 0; eInd = CB_RESRANGE - (eIndAug - sIndAug + 1); } } } else { /* lTarget = 22 or 23 */ if (sInd < 0) { eInd -= sInd; sInd = 0; } if (eInd > range) { sInd -= (eInd - range); eInd = range; } } } /* search of higher codebook section */ /* index search range */ counter = sInd; sInd += base_size; eInd += base_size; if (stage == 0) { ppe = energy + base_size; *ppe = 0.0; pp = cbvectors + lMem - lTarget; for (j = 0; j < lTarget; j++, pp++) { *ppe += (*pp) * (*pp); } ppi = cbvectors + lMem - 1 - lTarget; ppo = cbvectors + lMem - 1; for (j = 0; j < (range - 1); j++) { *(ppe + 1) = *ppe + (*ppi) * (*ppi) - (*ppo) * (*ppo); ppo--; ppi--; ppe++; } } /* loop over search range */ for (icount = sInd; icount < eInd; icount++) { /* calculate measure */ crossDot = 0.0; pp = cbvectors + lMem - (counter++) - lTarget; for (j = 0; j < lTarget; j++) { crossDot += target[j] * (*pp++); } if (energy[icount] > 0.0) { invenergy[icount] = (float) 1.0 / (energy[icount] + EPS); } else { invenergy[icount] = (float) 0.0; } if (stage == 0) { measure = (float) -10000000.0; if (crossDot > 0.0) { measure = crossDot * crossDot * invenergy[icount]; } } else { measure = crossDot * crossDot * invenergy[icount]; } /* check if measure is better */ ftmp = crossDot * invenergy[icount]; if ((measure > max_measure) && (fabs(ftmp) < CB_MAXGAIN)) { best_index = icount; max_measure = measure; gain = ftmp; } } /* Search the augmented CB inside the limited range. */ if ((lTarget == SUBL) && (sIndAug != 0)) { searchAugmentedCB(sIndAug, eIndAug, stage, 2 * base_size - 20, target, cbvectors + lMem, &max_measure, &best_index, &gain, energy, invenergy); } /* record best index */ index[stage] = best_index; /* gain quantization */ if (stage == 0) { if (gain < 0.0) { gain = 0.0; } if (gain > CB_MAXGAIN) { gain = (float) CB_MAXGAIN; } gain = gainquant(gain, 1.0, 32, &gain_index[stage]); } else { if (stage == 1) { gain = gainquant(gain, (float) fabs(gains[stage - 1]), 16, &gain_index[stage]); } else { gain = gainquant(gain, (float) fabs(gains[stage - 1]), 8, &gain_index[stage]); } } /* Extract the best (according to measure) codebook vector */ if (lTarget == (STATE_LEN - iLBCenc_inst->state_short_len)) { if (index[stage] < base_size) { pp = buf + LPC_FILTERORDER + lMem - lTarget - index[stage]; } else { pp = cbvectors + lMem - lTarget - index[stage] + base_size; } } else { if (index[stage] < base_size) { if (index[stage] < (base_size - 20)) { pp = buf + LPC_FILTERORDER + lMem - lTarget - index[stage]; } else { createAugmentedVec(index[stage] - base_size + 40, buf + LPC_FILTERORDER + lMem, aug_vec); pp = aug_vec; } } else { int filterno, position; filterno = index[stage] / base_size; position = index[stage] - filterno * base_size; if (position < (base_size - 20)) { pp = cbvectors + filterno * lMem - lTarget - index[stage] + filterno * base_size; } else { createAugmentedVec(index[stage] - (filterno + 1) * base_size + 40, cbvectors + filterno * lMem, aug_vec); pp = aug_vec; } } } /* Subtract the best codebook vector, according to measure, from the target vector */ for (j = 0; j < lTarget; j++) { cvec[j] += gain * (*pp); target[j] -= gain * (*pp++); } /* record quantized gain */ gains[stage] = gain; } /* end of Main Loop. for (stage=0;... */ /* Gain adjustment for energy matching */ cene = 0.0; for (i = 0; i < lTarget; i++) { cene += cvec[i] * cvec[i]; } j = gain_index[0]; for (i = gain_index[0]; i < 32; i++) { ftmp = cene * gain_sq5Tbl[i] * gain_sq5Tbl[i]; if ((ftmp < (tene * gains[0] * gains[0])) && (gain_sq5Tbl[j] < (2.0 * gains[0]))) { j = i; } } gain_index[0] = j; }