Mercurial > hg > audiostuff
view intercom/ilbc/lsf.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | 13be24d74cd2 |
children |
line wrap: on
line source
/****************************************************************** iLBC Speech Coder ANSI-C Source Code lsf.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include <string.h> #include <math.h> #include "iLBC_define.h" /*----------------------------------------------------------------* * conversion from lpc coefficients to lsf coefficients *---------------------------------------------------------------*/ void a2lsf(float *freq, /* (o) lsf coefficients */ float *a /* (i) lpc coefficients */ ) { float steps[LSF_NUMBER_OF_STEPS] = { (float) 0.00635, (float) 0.003175, (float) 0.0015875, (float) 0.00079375 }; float step; int step_idx; int lsp_index; float p[LPC_HALFORDER]; float q[LPC_HALFORDER]; float p_pre[LPC_HALFORDER]; float q_pre[LPC_HALFORDER]; float old_p, old_q, *old; float *pq_coef; float omega, old_omega; int i; float hlp, hlp1, hlp2, hlp3, hlp4, hlp5; for (i = 0; i < LPC_HALFORDER; i++) { p[i] = (float) -1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]); q[i] = a[LPC_FILTERORDER - i] - a[i + 1]; } p_pre[0] = (float) -1.0 - p[0]; p_pre[1] = -p_pre[0] - p[1]; p_pre[2] = -p_pre[1] - p[2]; p_pre[3] = -p_pre[2] - p[3]; p_pre[4] = -p_pre[3] - p[4]; p_pre[4] = p_pre[4] / 2; q_pre[0] = (float) 1.0 - q[0]; q_pre[1] = q_pre[0] - q[1]; q_pre[2] = q_pre[1] - q[2]; q_pre[3] = q_pre[2] - q[3]; q_pre[4] = q_pre[3] - q[4]; q_pre[4] = q_pre[4] / 2; omega = 0.0; old_omega = 0.0; old_p = FLOAT_MAX; old_q = FLOAT_MAX; /* Here we loop through lsp_index to find all the LPC_FILTERORDER roots for omega. */ for (lsp_index = 0; lsp_index < LPC_FILTERORDER; lsp_index++) { /* Depending on lsp_index being even or odd, we alternatively solve the roots for the two LSP equations. */ if ((lsp_index & 0x1) == 0) { pq_coef = p_pre; old = &old_p; } else { pq_coef = q_pre; old = &old_q; } /* Start with low resolution grid */ for (step_idx = 0, step = steps[step_idx]; step_idx < LSF_NUMBER_OF_STEPS;) { /* cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) + pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */ hlp = (float) cos(omega * TWO_PI); hlp1 = (float) 2.0 *hlp + pq_coef[0]; hlp2 = (float) 2.0 *hlp * hlp1 - (float) 1.0 + pq_coef[1]; hlp3 = (float) 2.0 *hlp * hlp2 - hlp1 + pq_coef[2]; hlp4 = (float) 2.0 *hlp * hlp3 - hlp2 + pq_coef[3]; hlp5 = hlp * hlp4 - hlp3 + pq_coef[4]; if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)) { if (step_idx == (LSF_NUMBER_OF_STEPS - 1)) { if (fabs(hlp5) >= fabs(*old)) { freq[lsp_index] = omega - step; } else { freq[lsp_index] = omega; } if ((*old) >= 0.0) { *old = (float) -1.0 * FLOAT_MAX; } else { *old = FLOAT_MAX; } omega = old_omega; step_idx = 0; step_idx = LSF_NUMBER_OF_STEPS; } else { if (step_idx == 0) { old_omega = omega; } step_idx++; omega -= steps[step_idx]; /* Go back one grid step */ step = steps[step_idx]; } } else { /* increment omega until they are of different sign, and we know there is at least one root between omega and old_omega */ *old = hlp5; omega += step; } } } for (i = 0; i < LPC_FILTERORDER; i++) { freq[i] = freq[i] * TWO_PI; } } /*----------------------------------------------------------------* * conversion from lsf coefficients to lpc coefficients *---------------------------------------------------------------*/ void lsf2a(float *a_coef, /* (o) lpc coefficients */ float *freq /* (i) lsf coefficients */ ) { int i, j; float hlp; float p[LPC_HALFORDER], q[LPC_HALFORDER]; float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER], a2[LPC_HALFORDER]; float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER], b2[LPC_HALFORDER]; for (i = 0; i < LPC_FILTERORDER; i++) { freq[i] = freq[i] * PI2; } /* Check input for ill-conditioned cases. This part is not found in the TIA standard. It involves the following 2 IF blocks. If "freq" is judged ill-conditioned, then we first modify freq[0] and freq[LPC_HALFORDER-1] (normally LPC_HALFORDER = 10 for LPC applications), then we adjust the other "freq" values slightly */ if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)) { if (freq[0] <= 0.0) { freq[0] = (float) 0.022; } if (freq[LPC_FILTERORDER - 1] >= 0.5) { freq[LPC_FILTERORDER - 1] = (float) 0.499; } hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) / (float) (LPC_FILTERORDER - 1); for (i = 1; i < LPC_FILTERORDER; i++) { freq[i] = freq[i - 1] + hlp; } } memset(a1, 0, LPC_HALFORDER * sizeof(float)); memset(a2, 0, LPC_HALFORDER * sizeof(float)); memset(b1, 0, LPC_HALFORDER * sizeof(float)); memset(b2, 0, LPC_HALFORDER * sizeof(float)); memset(a, 0, (LPC_HALFORDER + 1) * sizeof(float)); memset(b, 0, (LPC_HALFORDER + 1) * sizeof(float)); /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2. Note that for this code p[i] specifies the coefficients used in .Q_A(z) while q[i] specifies the coefficients used in .P_A(z) */ for (i = 0; i < LPC_HALFORDER; i++) { p[i] = (float) cos(TWO_PI * freq[2 * i]); q[i] = (float) cos(TWO_PI * freq[2 * i + 1]); } a[0] = 0.25; b[0] = 0.25; for (i = 0; i < LPC_HALFORDER; i++) { a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; a2[i] = a1[i]; a1[i] = a[i]; b2[i] = b1[i]; b1[i] = b[i]; } for (j = 0; j < LPC_FILTERORDER; j++) { if (j == 0) { a[0] = 0.25; b[0] = -0.25; } else { a[0] = b[0] = 0.0; } for (i = 0; i < LPC_HALFORDER; i++) { a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; a2[i] = a1[i]; a1[i] = a[i]; b2[i] = b1[i]; b1[i] = b[i]; } a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]); } a_coef[0] = 1.0; }