Mercurial > hg > audiostuff
view spandsp-0.0.6pre17/src/filter_tools.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
line wrap: on
line source
/* * SpanDSP - a series of DSP components for telephony * * filter_tools.c - A collection of routines used for filter design. * * Written by Steve Underwood <steveu@coppice.org> * * Copyright (C) 2008 Steve Underwood * * This includes some elements based on the mkfilter package by * A.J. Fisher, University of York <fisher@minster.york.ac.uk>, November 1996 * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 2.1, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id: filter_tools.c,v 1.11 2009/10/05 16:33:25 steveu Exp $ */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include <inttypes.h> #include <stdlib.h> #if defined(HAVE_TGMATH_H) #include <tgmath.h> #endif #if defined(HAVE_MATH_H) #include <math.h> #endif #include "floating_fudge.h" #include <string.h> #include <stdio.h> #include <time.h> #include <fcntl.h> #include "spandsp/telephony.h" #include "spandsp/complex.h" #include "filter_tools.h" #if !defined(FALSE) #define FALSE 0 #endif #if !defined(TRUE) #define TRUE (!FALSE) #endif #define MAXPZ 8192 #define SEQ_LEN 8192 #define MAX_FFT_LEN SEQ_LEN static complex_t circle[MAX_FFT_LEN/2]; static __inline__ complex_t expj(double theta) { return complex_set(cos(theta), sin(theta)); } /*- End of function --------------------------------------------------------*/ static __inline__ double fix(double x) { /* Nearest integer */ return (x >= 0.0) ? floor(0.5 + x) : -floor(0.5 - x); } /*- End of function --------------------------------------------------------*/ static void fftx(complex_t data[], complex_t temp[], int n) { int i; int h; int p; int t; int i2; complex_t wkt; if (n > 1) { h = n/2; for (i = 0; i < h; i++) { i2 = i*2; temp[i] = data[i2]; /* Even */ temp[h + i] = data[i2 + 1]; /* Odd */ } fftx(&temp[0], &data[0], h); fftx(&temp[h], &data[h], h); p = 0; t = MAX_FFT_LEN/n; for (i = 0; i < h; i++) { wkt = complex_mul(&circle[p], &temp[h + i]); data[i] = complex_add(&temp[i], &wkt); data[h + i] = complex_sub(&temp[i], &wkt); p += t; } } } /*- End of function --------------------------------------------------------*/ void ifft(complex_t data[], int len) { int i; double x; complex_t temp[MAX_FFT_LEN]; /* A very slow and clunky FFT, that's just fine for filter design. */ for (i = 0; i < MAX_FFT_LEN/2; i++) { x = (2.0*3.1415926535*i)/(double) MAX_FFT_LEN; circle[i] = expj(x); } fftx(data, temp, len); } /*- End of function --------------------------------------------------------*/ void compute_raised_cosine_filter(double coeffs[], int len, int root, int sinc_compensate, double alpha, double beta) { double f; double x; double f1; double f2; double tau; complex_t vec[SEQ_LEN]; int i; int j; int h; f1 = (1.0 - beta)*alpha; f2 = (1.0 + beta)*alpha; tau = 0.5/alpha; /* (Root) raised cosine */ for (i = 0; i <= SEQ_LEN/2; i++) { f = (double) i/(double) SEQ_LEN; if (f <= f1) vec[i] = complex_set(1.0, 0.0); else if (f <= f2) vec[i] = complex_set(0.5*(1.0 + cos((3.1415926535*tau/beta)*(f - f1))), 0.0); else vec[i] = complex_set(0.0, 0.0); } if (root) { for (i = 0; i <= SEQ_LEN/2; i++) vec[i].re = sqrt(vec[i].re); } if (sinc_compensate) { for (i = 1; i <= SEQ_LEN/2; i++) { x = 3.1415926535*(double) i/(double) SEQ_LEN; vec[i].re *= (x/sin(x)); } } for (i = 0; i <= SEQ_LEN/2; i++) vec[i].re *= tau; for (i = 1; i < SEQ_LEN/2; i++) vec[SEQ_LEN - i] = vec[i]; ifft(vec, SEQ_LEN); h = (len - 1)/2; for (i = 0; i < len; i++) { j = (SEQ_LEN - h + i)%SEQ_LEN; coeffs[i] = vec[j].re/(double) SEQ_LEN; } } /*- End of function --------------------------------------------------------*/ void compute_hilbert_transform(double coeffs[], int len) { double x; int i; int h; h = (len - 1)/2; coeffs[h] = 0.0; for (i = 1; i <= h; i++) { if ((i & 1)) { x = 1.0/(double) i; coeffs[h + i] = -x; coeffs[h - i] = x; } } } /*- End of function --------------------------------------------------------*/ void apply_hamming_window(double coeffs[], int len) { double w; int i; int h; h = (len - 1)/2; for (i = 1; i <= h; i++) { w = 0.53836 - 0.46164*cos(2.0*3.1415926535*(double) (h + i)/(double) (len - 1.0)); coeffs[h + i] *= w; coeffs[h - i] *= w; } } /*- End of function --------------------------------------------------------*/ void truncate_coeffs(double coeffs[], int len, int bits, int hilbert) { double x; double fac; double max; double scale; int h; int i; fac = pow(2.0, (double) (bits - 1.0)); h = (len - 1)/2; max = (hilbert) ? coeffs[h - 1] : coeffs[h]; /* Max coeff */ scale = (fac - 1.0)/(fac*max); for (i = 0; i < len; i++) { x = coeffs[i]*scale; /* Scale coeffs so max is (fac - 1.0)/fac */ coeffs[i] = fix(x*fac)/fac; /* Truncate */ } } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/