Mercurial > hg > audiostuff
view spandsp-0.0.6pre17/src/g722.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
line wrap: on
line source
/* * SpanDSP - a series of DSP components for telephony * * g722.c - The ITU G.722 codec. * * Written by Steve Underwood <steveu@coppice.org> * * Copyright (C) 2005 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 2.1, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Based in part on a single channel G.722 codec which is: * * Copyright (c) CMU 1993 * Computer Science, Speech Group * Chengxiang Lu and Alex Hauptmann * * $Id: g722.c,v 1.10 2009/04/22 12:57:40 steveu Exp $ */ /*! \file */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include <inttypes.h> #include <memory.h> #include <stdlib.h> #if defined(HAVE_TGMATH_H) #include <tgmath.h> #endif #if defined(HAVE_MATH_H) #include <math.h> #endif #include "floating_fudge.h" #include "spandsp/telephony.h" #include "spandsp/fast_convert.h" #include "spandsp/saturated.h" #include "spandsp/vector_int.h" #include "spandsp/g722.h" #include "spandsp/private/g722.h" static const int16_t qmf_coeffs_fwd[12] = { 3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11, }; static const int16_t qmf_coeffs_rev[12] = { -11, 53, -156, 362, -805, 3876, 951, -210, 32, 12, -11, 3 }; static const int16_t qm2[4] = { -7408, -1616, 7408, 1616 }; static const int16_t qm4[16] = { 0, -20456, -12896, -8968, -6288, -4240, -2584, -1200, 20456, 12896, 8968, 6288, 4240, 2584, 1200, 0 }; static const int16_t qm5[32] = { -280, -280, -23352, -17560, -14120, -11664, -9752, -8184, -6864, -5712, -4696, -3784, -2960, -2208, -1520, -880, 23352, 17560, 14120, 11664, 9752, 8184, 6864, 5712, 4696, 3784, 2960, 2208, 1520, 880, 280, -280 }; static const int16_t qm6[64] = { -136, -136, -136, -136, -24808, -21904, -19008, -16704, -14984, -13512, -12280, -11192, -10232, -9360, -8576, -7856, -7192, -6576, -6000, -5456, -4944, -4464, -4008, -3576, -3168, -2776, -2400, -2032, -1688, -1360, -1040, -728, 24808, 21904, 19008, 16704, 14984, 13512, 12280, 11192, 10232, 9360, 8576, 7856, 7192, 6576, 6000, 5456, 4944, 4464, 4008, 3576, 3168, 2776, 2400, 2032, 1688, 1360, 1040, 728, 432, 136, -432, -136 }; static const int16_t q6[32] = { 0, 35, 72, 110, 150, 190, 233, 276, 323, 370, 422, 473, 530, 587, 650, 714, 786, 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, 1765, 1980, 2195, 2557, 2919, 0, 0 }; static const int16_t ilb[32] = { 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 }; static const int16_t iln[32] = { 0, 63, 62, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 0 }; static const int16_t ilp[32] = { 0, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 0 }; static const int16_t ihn[3] = { 0, 1, 0 }; static const int16_t ihp[3] = { 0, 3, 2 }; static const int16_t wl[8] = { -60, -30, 58, 172, 334, 538, 1198, 3042 }; static const int16_t rl42[16] = { 0, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 0 }; static const int16_t wh[3] = { 0, -214, 798 }; static const int16_t rh2[4] = { 2, 1, 2, 1 }; static void block4(g722_band_t *s, int16_t dx) { int16_t wd1; int16_t wd2; int16_t wd3; int16_t sp; int16_t r; int16_t p; int16_t ap[2]; int32_t wd32; int32_t sz; int i; /* RECONS */ r = saturated_add16(s->s, dx); /* PARREC */ p = saturated_add16(s->sz, dx); /* UPPOL2 */ wd1 = saturate((int32_t) s->a[0] << 2); wd32 = ((p ^ s->p[0]) & 0x8000) ? wd1 : -wd1; if (wd32 > 32767) wd32 = 32767; wd3 = (int16_t) ((((p ^ s->p[1]) & 0x8000) ? -128 : 128) + (wd32 >> 7) + (((int32_t) s->a[1]*(int32_t) 32512) >> 15)); if (abs(wd3) > 12288) wd3 = (wd3 < 0) ? -12288 : 12288; ap[1] = wd3; /* UPPOL1 */ wd1 = ((p ^ s->p[0]) & 0x8000) ? -192 : 192; wd2 = (int16_t) (((int32_t) s->a[0]*(int32_t) 32640) >> 15); ap[0] = saturated_add16(wd1, wd2); wd3 = saturated_sub16(15360, ap[1]); if (abs(ap[0]) > wd3) ap[0] = (ap[0] < 0) ? -wd3 : wd3; /* FILTEP */ wd1 = saturated_add16(r, r); wd1 = (int16_t) (((int32_t) ap[0]*(int32_t) wd1) >> 15); wd2 = saturated_add16(s->r, s->r); wd2 = (int16_t) (((int32_t) ap[1]*(int32_t) wd2) >> 15); sp = saturated_add16(wd1, wd2); s->r = r; s->a[1] = ap[1]; s->a[0] = ap[0]; s->p[1] = s->p[0]; s->p[0] = p; /* UPZERO */ /* DELAYA */ /* FILTEZ */ wd1 = (dx == 0) ? 0 : 128; s->d[0] = dx; sz = 0; for (i = 5; i >= 0; i--) { wd2 = ((s->d[i + 1] ^ dx) & 0x8000) ? -wd1 : wd1; wd3 = (int16_t) (((int32_t) s->b[i]*(int32_t) 32640) >> 15); s->b[i] = saturated_add16(wd2, wd3); wd3 = saturated_add16(s->d[i], s->d[i]); sz += ((int32_t) s->b[i]*(int32_t) wd3) >> 15; s->d[i + 1] = s->d[i]; } s->sz = saturate(sz); /* PREDIC */ s->s = saturated_add16(sp, s->sz); } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(g722_decode_state_t *) g722_decode_init(g722_decode_state_t *s, int rate, int options) { if (s == NULL) { if ((s = (g722_decode_state_t *) malloc(sizeof(*s))) == NULL) return NULL; } memset(s, 0, sizeof(*s)); if (rate == 48000) s->bits_per_sample = 6; else if (rate == 56000) s->bits_per_sample = 7; else s->bits_per_sample = 8; if ((options & G722_SAMPLE_RATE_8000)) s->eight_k = TRUE; if ((options & G722_PACKED) && s->bits_per_sample != 8) s->packed = TRUE; else s->packed = FALSE; s->band[0].det = 32; s->band[1].det = 8; return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) g722_decode_release(g722_decode_state_t *s) { return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) g722_decode_free(g722_decode_state_t *s) { free(s); return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) g722_decode(g722_decode_state_t *s, int16_t amp[], const uint8_t g722_data[], int len) { int rlow; int ihigh; int16_t dlow; int16_t dhigh; int rhigh; int wd1; int wd2; int wd3; int code; int outlen; int j; outlen = 0; rhigh = 0; for (j = 0; j < len; ) { if (s->packed) { /* Unpack the code bits */ if (s->in_bits < s->bits_per_sample) { s->in_buffer |= (g722_data[j++] << s->in_bits); s->in_bits += 8; } code = s->in_buffer & ((1 << s->bits_per_sample) - 1); s->in_buffer >>= s->bits_per_sample; s->in_bits -= s->bits_per_sample; } else { code = g722_data[j++]; } switch (s->bits_per_sample) { default: case 8: wd1 = code & 0x3F; ihigh = (code >> 6) & 0x03; wd2 = qm6[wd1]; wd1 >>= 2; break; case 7: wd1 = code & 0x1F; ihigh = (code >> 5) & 0x03; wd2 = qm5[wd1]; wd1 >>= 1; break; case 6: wd1 = code & 0x0F; ihigh = (code >> 4) & 0x03; wd2 = qm4[wd1]; break; } /* Block 5L, LOW BAND INVQBL */ wd2 = ((int32_t) s->band[0].det*(int32_t) wd2) >> 15; /* Block 5L, RECONS */ /* Block 6L, LIMIT */ rlow = saturate15(s->band[0].s + wd2); /* Block 2L, INVQAL */ wd2 = qm4[wd1]; dlow = (int16_t) (((int32_t) s->band[0].det*(int32_t) wd2) >> 15); /* Block 3L, LOGSCL */ wd2 = rl42[wd1]; wd1 = ((int32_t) s->band[0].nb*(int32_t) 127) >> 7; wd1 += wl[wd2]; if (wd1 < 0) wd1 = 0; else if (wd1 > 18432) wd1 = 18432; s->band[0].nb = (int16_t) wd1; /* Block 3L, SCALEL */ wd1 = (s->band[0].nb >> 6) & 31; wd2 = 8 - (s->band[0].nb >> 11); wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2); s->band[0].det = (int16_t) (wd3 << 2); block4(&s->band[0], dlow); if (!s->eight_k) { /* Block 2H, INVQAH */ wd2 = qm2[ihigh]; dhigh = (int16_t) (((int32_t) s->band[1].det*(int32_t) wd2) >> 15); /* Block 5H, RECONS */ /* Block 6H, LIMIT */ rhigh = saturate15(dhigh + s->band[1].s); /* Block 2H, INVQAH */ wd2 = rh2[ihigh]; wd1 = ((int32_t) s->band[1].nb*(int32_t) 127) >> 7; wd1 += wh[wd2]; if (wd1 < 0) wd1 = 0; else if (wd1 > 22528) wd1 = 22528; s->band[1].nb = (int16_t) wd1; /* Block 3H, SCALEH */ wd1 = (s->band[1].nb >> 6) & 31; wd2 = 10 - (s->band[1].nb >> 11); wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2); s->band[1].det = (int16_t) (wd3 << 2); block4(&s->band[1], dhigh); } if (s->itu_test_mode) { amp[outlen++] = (int16_t) (rlow << 1); amp[outlen++] = (int16_t) (rhigh << 1); } else { if (s->eight_k) { /* We shift by 1 to allow for the 15 bit input to the G.722 algorithm. */ amp[outlen++] = (int16_t) (rlow << 1); } else { /* Apply the QMF to build the final signal */ s->x[s->ptr] = (int16_t) (rlow + rhigh); s->y[s->ptr] = (int16_t) (rlow - rhigh); if (++s->ptr >= 12) s->ptr = 0; /* We shift by 12 to allow for the QMF filters (DC gain = 4096), less 1 to allow for the 15 bit input to the G.722 algorithm. */ amp[outlen++] = (int16_t) (vec_circular_dot_prodi16(s->y, qmf_coeffs_rev, 12, s->ptr) >> 11); amp[outlen++] = (int16_t) (vec_circular_dot_prodi16(s->x, qmf_coeffs_fwd, 12, s->ptr) >> 11); } } } return outlen; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(g722_encode_state_t *) g722_encode_init(g722_encode_state_t *s, int rate, int options) { if (s == NULL) { if ((s = (g722_encode_state_t *) malloc(sizeof(*s))) == NULL) return NULL; } memset(s, 0, sizeof(*s)); if (rate == 48000) s->bits_per_sample = 6; else if (rate == 56000) s->bits_per_sample = 7; else s->bits_per_sample = 8; if ((options & G722_SAMPLE_RATE_8000)) s->eight_k = TRUE; if ((options & G722_PACKED) && s->bits_per_sample != 8) s->packed = TRUE; else s->packed = FALSE; s->band[0].det = 32; s->band[1].det = 8; return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) g722_encode_release(g722_encode_state_t *s) { return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) g722_encode_free(g722_encode_state_t *s) { free(s); return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) g722_encode(g722_encode_state_t *s, uint8_t g722_data[], const int16_t amp[], int len) { int16_t dlow; int16_t dhigh; int el; int wd; int wd1; int ril; int wd2; int il4; int ih2; int wd3; int eh; int g722_bytes; int ihigh; int ilow; int code; /* Low and high band PCM from the QMF */ int16_t xlow; int16_t xhigh; int32_t sumeven; int32_t sumodd; int mih; int i; int j; g722_bytes = 0; xhigh = 0; for (j = 0; j < len; ) { if (s->itu_test_mode) { xlow = xhigh = amp[j++] >> 1; } else { if (s->eight_k) { /* We shift by 1 to allow for the 15 bit input to the G.722 algorithm. */ xlow = amp[j++] >> 1; } else { /* Apply the transmit QMF */ s->x[s->ptr] = amp[j++]; s->y[s->ptr] = amp[j++]; if (++s->ptr >= 12) s->ptr = 0; sumodd = vec_circular_dot_prodi16(s->x, qmf_coeffs_fwd, 12, s->ptr); sumeven = vec_circular_dot_prodi16(s->y, qmf_coeffs_rev, 12, s->ptr); /* We shift by 12 to allow for the QMF filters (DC gain = 4096), plus 1 to allow for us summing two filters, plus 1 to allow for the 15 bit input to the G.722 algorithm. */ xlow = (int16_t) ((sumeven + sumodd) >> 14); xhigh = (int16_t) ((sumeven - sumodd) >> 14); } } /* Block 1L, SUBTRA */ el = saturated_sub16(xlow, s->band[0].s); /* Block 1L, QUANTL */ wd = (el >= 0) ? el : ~el; for (i = 1; i < 30; i++) { wd1 = ((int32_t) q6[i]*(int32_t) s->band[0].det) >> 12; if (wd < wd1) break; } ilow = (el < 0) ? iln[i] : ilp[i]; /* Block 2L, INVQAL */ ril = ilow >> 2; wd2 = qm4[ril]; dlow = (int16_t) (((int32_t) s->band[0].det*(int32_t) wd2) >> 15); /* Block 3L, LOGSCL */ il4 = rl42[ril]; wd = ((int32_t) s->band[0].nb*(int32_t) 127) >> 7; s->band[0].nb = (int16_t) (wd + wl[il4]); if (s->band[0].nb < 0) s->band[0].nb = 0; else if (s->band[0].nb > 18432) s->band[0].nb = 18432; /* Block 3L, SCALEL */ wd1 = (s->band[0].nb >> 6) & 31; wd2 = 8 - (s->band[0].nb >> 11); wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2); s->band[0].det = (int16_t) (wd3 << 2); block4(&s->band[0], dlow); if (s->eight_k) { /* Just leave the high bits as zero */ code = (0xC0 | ilow) >> (8 - s->bits_per_sample); } else { /* Block 1H, SUBTRA */ eh = saturated_sub16(xhigh, s->band[1].s); /* Block 1H, QUANTH */ wd = (eh >= 0) ? eh : ~eh; wd1 = (564*s->band[1].det) >> 12; mih = (wd >= wd1) ? 2 : 1; ihigh = (eh < 0) ? ihn[mih] : ihp[mih]; /* Block 2H, INVQAH */ wd2 = qm2[ihigh]; dhigh = (int16_t) (((int32_t) s->band[1].det*(int32_t) wd2) >> 15); /* Block 3H, LOGSCH */ ih2 = rh2[ihigh]; wd = ((int32_t) s->band[1].nb*(int32_t) 127) >> 7; s->band[1].nb = (int16_t) (wd + wh[ih2]); if (s->band[1].nb < 0) s->band[1].nb = 0; else if (s->band[1].nb > 22528) s->band[1].nb = 22528; /* Block 3H, SCALEH */ wd1 = (s->band[1].nb >> 6) & 31; wd2 = 10 - (s->band[1].nb >> 11); wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2); s->band[1].det = (int16_t) (wd3 << 2); block4(&s->band[1], dhigh); code = ((ihigh << 6) | ilow) >> (8 - s->bits_per_sample); } if (s->packed) { /* Pack the code bits */ s->out_buffer |= (code << s->out_bits); s->out_bits += s->bits_per_sample; if (s->out_bits >= 8) { g722_data[g722_bytes++] = (uint8_t) (s->out_buffer & 0xFF); s->out_bits -= 8; s->out_buffer >>= 8; } } else { g722_data[g722_bytes++] = (uint8_t) code; } } return g722_bytes; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/