Mercurial > hg > audiostuff
view spandsp-0.0.6pre17/src/v27ter_tx.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
line wrap: on
line source
/* * SpanDSP - a series of DSP components for telephony * * v27ter_tx.c - ITU V.27ter modem transmit part * * Written by Steve Underwood <steveu@coppice.org> * * Copyright (C) 2003 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 2.1, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id: v27ter_tx.c,v 1.76 2009/06/02 16:03:56 steveu Exp $ */ /*! \file */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include <stdio.h> #include <inttypes.h> #include <stdlib.h> #include <string.h> #if defined(HAVE_TGMATH_H) #include <tgmath.h> #endif #if defined(HAVE_MATH_H) #include <math.h> #endif #include "floating_fudge.h" #include "spandsp/telephony.h" #include "spandsp/fast_convert.h" #include "spandsp/logging.h" #include "spandsp/complex.h" #include "spandsp/vector_float.h" #include "spandsp/complex_vector_float.h" #include "spandsp/async.h" #include "spandsp/dds.h" #include "spandsp/power_meter.h" #include "spandsp/v27ter_tx.h" #include "spandsp/private/logging.h" #include "spandsp/private/v27ter_tx.h" #if defined(SPANDSP_USE_FIXED_POINT) #include "v27ter_tx_4800_fixed_rrc.h" #include "v27ter_tx_2400_fixed_rrc.h" #else #include "v27ter_tx_4800_floating_rrc.h" #include "v27ter_tx_2400_floating_rrc.h" #endif /*! The nominal frequency of the carrier, in Hertz */ #define CARRIER_NOMINAL_FREQ 1800.0f /* Segments of the training sequence */ /* V.27ter defines a long and a short sequence. FAX doesn't use the short sequence, so it is not implemented here. */ /*! The start of training segment 1, in symbols */ #define V27TER_TRAINING_SEG_1 0 /*! The start of training segment 2, in symbols */ #define V27TER_TRAINING_SEG_2 (V27TER_TRAINING_SEG_1 + 320) /*! The start of training segment 3, in symbols */ #define V27TER_TRAINING_SEG_3 (V27TER_TRAINING_SEG_2 + 32) /*! The start of training segment 4, in symbols */ #define V27TER_TRAINING_SEG_4 (V27TER_TRAINING_SEG_3 + 50) /*! The start of training segment 5, in symbols */ #define V27TER_TRAINING_SEG_5 (V27TER_TRAINING_SEG_4 + 1074) /*! The end of the training, in symbols */ #define V27TER_TRAINING_END (V27TER_TRAINING_SEG_5 + 8) /*! The end of the shutdown sequence, in symbols */ #define V27TER_TRAINING_SHUTDOWN_END (V27TER_TRAINING_END + 32) static int fake_get_bit(void *user_data) { return 1; } /*- End of function --------------------------------------------------------*/ static __inline__ int scramble(v27ter_tx_state_t *s, int in_bit) { int out_bit; /* This scrambler is really quite messy to implement. There seems to be no efficient shortcut */ out_bit = (in_bit ^ (s->scramble_reg >> 5) ^ (s->scramble_reg >> 6)) & 1; if (s->scrambler_pattern_count >= 33) { out_bit ^= 1; s->scrambler_pattern_count = 0; } else { if ((((s->scramble_reg >> 7) ^ out_bit) & ((s->scramble_reg >> 8) ^ out_bit) & ((s->scramble_reg >> 11) ^ out_bit) & 1)) s->scrambler_pattern_count = 0; else s->scrambler_pattern_count++; } s->scramble_reg = (s->scramble_reg << 1) | out_bit; return out_bit; } /*- End of function --------------------------------------------------------*/ static __inline__ int get_scrambled_bit(v27ter_tx_state_t *s) { int bit; if ((bit = s->current_get_bit(s->get_bit_user_data)) == SIG_STATUS_END_OF_DATA) { /* End of real data. Switch to the fake get_bit routine, until we have shut down completely. */ if (s->status_handler) s->status_handler(s->status_user_data, SIG_STATUS_END_OF_DATA); s->current_get_bit = fake_get_bit; s->in_training = TRUE; bit = 1; } return scramble(s, bit); } /*- End of function --------------------------------------------------------*/ #if defined(SPANDSP_USE_FIXED_POINT) static complexi16_t getbaud(v27ter_tx_state_t *s) #else static complexf_t getbaud(v27ter_tx_state_t *s) #endif { static const int phase_steps_4800[8] = { 1, 0, 2, 3, 6, 7, 5, 4 }; static const int phase_steps_2400[4] = { 0, 2, 6, 4 }; #if defined(SPANDSP_USE_FIXED_POINT) static const complexi16_t constellation[8] = { { 1414, 0000}, /* 0deg */ { 1000, 1000}, /* 45deg */ { 0000, 1414}, /* 90deg */ {-1000, 1000}, /* 135deg */ {-1414, 0000}, /* 180deg */ {-1000, -1000}, /* 225deg */ { 0000, -1414}, /* 270deg */ { 1000, -1000} /* 315deg */ }; static const complexi16_t zero = {0, 0}; #else static const complexf_t constellation[8] = { { 1.414f, 0.0f}, /* 0deg */ { 1.0f, 1.0f}, /* 45deg */ { 0.0f, 1.414f}, /* 90deg */ {-1.0f, 1.0f}, /* 135deg */ {-1.414f, 0.0f}, /* 180deg */ {-1.0f, -1.0f}, /* 225deg */ { 0.0f, -1.414f}, /* 270deg */ { 1.0f, -1.0f} /* 315deg */ }; static const complexf_t zero = {0.0f, 0.0f}; #endif int bits; if (s->in_training) { /* Send the training sequence */ if (++s->training_step <= V27TER_TRAINING_SEG_5) { if (s->training_step <= V27TER_TRAINING_SEG_4) { if (s->training_step <= V27TER_TRAINING_SEG_2) { /* Segment 1: Unmodulated carrier (talker echo protection) */ return constellation[0]; } if (s->training_step <= V27TER_TRAINING_SEG_3) { /* Segment 2: Silence */ return zero; } /* Segment 3: Regular reversals... */ s->constellation_state = (s->constellation_state + 4) & 7; return constellation[s->constellation_state]; } /* Segment 4: Scrambled reversals... */ /* Apply the 1 + x^-6 + x^-7 scrambler. We want every third bit from the scrambler. */ bits = get_scrambled_bit(s) << 2; get_scrambled_bit(s); get_scrambled_bit(s); s->constellation_state = (s->constellation_state + bits) & 7; return constellation[s->constellation_state]; } /* We should be in the block of test ones, or shutdown ones, if we get here. */ /* There is no graceful shutdown procedure defined for V.27ter. Just send some ones, to ensure we get the real data bits through, even with bad ISI. */ if (s->training_step == V27TER_TRAINING_END + 1) { /* End of the last segment - segment 5: All ones */ /* Switch from the fake get_bit routine, to the user supplied real one, and we are up and running. */ s->current_get_bit = s->get_bit; s->in_training = FALSE; } if (s->training_step == V27TER_TRAINING_SHUTDOWN_END) { if (s->status_handler) s->status_handler(s->status_user_data, SIG_STATUS_SHUTDOWN_COMPLETE); } } /* 4800bps uses 8 phases. 2400bps uses 4 phases. */ if (s->bit_rate == 4800) { bits = get_scrambled_bit(s); bits = (bits << 1) | get_scrambled_bit(s); bits = (bits << 1) | get_scrambled_bit(s); bits = phase_steps_4800[bits]; } else { bits = get_scrambled_bit(s); bits = (bits << 1) | get_scrambled_bit(s); bits = phase_steps_2400[bits]; } s->constellation_state = (s->constellation_state + bits) & 7; return constellation[s->constellation_state]; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE_NONSTD(int) v27ter_tx(v27ter_tx_state_t *s, int16_t amp[], int len) { #if defined(SPANDSP_USE_FIXED_POINT) complexi_t x; complexi_t z; #else complexf_t x; complexf_t z; #endif int i; int sample; if (s->training_step >= V27TER_TRAINING_SHUTDOWN_END) { /* Once we have sent the shutdown symbols, we stop sending completely. */ return 0; } /* The symbol rates for the two bit rates are different. This makes it difficult to merge both generation procedures into a single efficient loop. We do not bother trying. We use two independent loops, filter coefficients, etc. */ if (s->bit_rate == 4800) { for (sample = 0; sample < len; sample++) { if (++s->baud_phase >= 5) { s->baud_phase -= 5; s->rrc_filter[s->rrc_filter_step] = s->rrc_filter[s->rrc_filter_step + V27TER_TX_FILTER_STEPS] = getbaud(s); if (++s->rrc_filter_step >= V27TER_TX_FILTER_STEPS) s->rrc_filter_step = 0; } /* Root raised cosine pulse shaping at baseband */ #if defined(SPANDSP_USE_FIXED_POINT) x = complex_seti(0, 0); for (i = 0; i < V27TER_TX_FILTER_STEPS; i++) { x.re += (int32_t) tx_pulseshaper_4800[TX_PULSESHAPER_4800_COEFF_SETS - 1 - s->baud_phase][i]*(int32_t) s->rrc_filter[i + s->rrc_filter_step].re; x.im += (int32_t) tx_pulseshaper_4800[TX_PULSESHAPER_4800_COEFF_SETS - 1 - s->baud_phase][i]*(int32_t) s->rrc_filter[i + s->rrc_filter_step].im; } /* Now create and modulate the carrier */ x.re >>= 14; x.im >>= 14; z = dds_complexi(&(s->carrier_phase), s->carrier_phase_rate); /* Don't bother saturating. We should never clip. */ i = (x.re*z.re - x.im*z.im) >> 15; amp[sample] = (int16_t) ((i*s->gain_4800) >> 15); #else x = complex_setf(0.0f, 0.0f); for (i = 0; i < V27TER_TX_FILTER_STEPS; i++) { x.re += tx_pulseshaper_4800[TX_PULSESHAPER_4800_COEFF_SETS - 1 - s->baud_phase][i]*s->rrc_filter[i + s->rrc_filter_step].re; x.im += tx_pulseshaper_4800[TX_PULSESHAPER_4800_COEFF_SETS - 1 - s->baud_phase][i]*s->rrc_filter[i + s->rrc_filter_step].im; } /* Now create and modulate the carrier */ z = dds_complexf(&(s->carrier_phase), s->carrier_phase_rate); /* Don't bother saturating. We should never clip. */ amp[sample] = (int16_t) lfastrintf((x.re*z.re - x.im*z.im)*s->gain_4800); #endif } } else { for (sample = 0; sample < len; sample++) { if ((s->baud_phase += 3) >= 20) { s->baud_phase -= 20; s->rrc_filter[s->rrc_filter_step] = s->rrc_filter[s->rrc_filter_step + V27TER_TX_FILTER_STEPS] = getbaud(s); if (++s->rrc_filter_step >= V27TER_TX_FILTER_STEPS) s->rrc_filter_step = 0; } /* Root raised cosine pulse shaping at baseband */ #if defined(SPANDSP_USE_FIXED_POINT) x = complex_seti(0, 0); for (i = 0; i < V27TER_TX_FILTER_STEPS; i++) { x.re += (int32_t) tx_pulseshaper_2400[TX_PULSESHAPER_2400_COEFF_SETS - 1 - s->baud_phase][i]*(int32_t) s->rrc_filter[i + s->rrc_filter_step].re; x.im += (int32_t) tx_pulseshaper_2400[TX_PULSESHAPER_2400_COEFF_SETS - 1 - s->baud_phase][i]*(int32_t) s->rrc_filter[i + s->rrc_filter_step].im; } /* Now create and modulate the carrier */ x.re >>= 14; x.im >>= 14; z = dds_complexi(&(s->carrier_phase), s->carrier_phase_rate); /* Don't bother saturating. We should never clip. */ i = (x.re*z.re - x.im*z.im) >> 15; amp[sample] = (int16_t) ((i*s->gain_2400) >> 15); #else x = complex_setf(0.0f, 0.0f); for (i = 0; i < V27TER_TX_FILTER_STEPS; i++) { x.re += tx_pulseshaper_2400[TX_PULSESHAPER_2400_COEFF_SETS - 1 - s->baud_phase][i]*s->rrc_filter[i + s->rrc_filter_step].re; x.im += tx_pulseshaper_2400[TX_PULSESHAPER_2400_COEFF_SETS - 1 - s->baud_phase][i]*s->rrc_filter[i + s->rrc_filter_step].im; } /* Now create and modulate the carrier */ z = dds_complexf(&(s->carrier_phase), s->carrier_phase_rate); /* Don't bother saturating. We should never clip. */ amp[sample] = (int16_t) lfastrintf((x.re*z.re - x.im*z.im)*s->gain_2400); #endif } } return sample; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) v27ter_tx_power(v27ter_tx_state_t *s, float power) { float l; l = powf(10.0f, (power - DBM0_MAX_POWER)/20.0f)*32768.0f; #if defined(SPANDSP_USE_FIXED_POINT) s->gain_2400 = 16.0f*1.024f*(32767.0f/28828.51f)*l/TX_PULSESHAPER_2400_GAIN; s->gain_4800 = 16.0f*1.024f*(32767.0f/28828.46f)*l/TX_PULSESHAPER_4800_GAIN; #else s->gain_2400 = l/TX_PULSESHAPER_2400_GAIN; s->gain_4800 = l/TX_PULSESHAPER_4800_GAIN; #endif } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) v27ter_tx_set_get_bit(v27ter_tx_state_t *s, get_bit_func_t get_bit, void *user_data) { if (s->get_bit == s->current_get_bit) s->current_get_bit = get_bit; s->get_bit = get_bit; s->get_bit_user_data = user_data; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) v27ter_tx_set_modem_status_handler(v27ter_tx_state_t *s, modem_tx_status_func_t handler, void *user_data) { s->status_handler = handler; s->status_user_data = user_data; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(logging_state_t *) v27ter_tx_get_logging_state(v27ter_tx_state_t *s) { return &s->logging; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) v27ter_tx_restart(v27ter_tx_state_t *s, int bit_rate, int tep) { if (bit_rate != 4800 && bit_rate != 2400) return -1; s->bit_rate = bit_rate; #if defined(SPANDSP_USE_FIXED_POINT) memset(s->rrc_filter, 0, sizeof(s->rrc_filter)); #else cvec_zerof(s->rrc_filter, sizeof(s->rrc_filter)/sizeof(s->rrc_filter[0])); #endif s->rrc_filter_step = 0; s->scramble_reg = 0x3C; s->scrambler_pattern_count = 0; s->in_training = TRUE; s->training_step = (tep) ? V27TER_TRAINING_SEG_1 : V27TER_TRAINING_SEG_2; s->carrier_phase = 0; s->baud_phase = 0; s->constellation_state = 0; s->current_get_bit = fake_get_bit; return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(v27ter_tx_state_t *) v27ter_tx_init(v27ter_tx_state_t *s, int bit_rate, int tep, get_bit_func_t get_bit, void *user_data) { switch (bit_rate) { case 4800: case 2400: break; default: return NULL; } if (s == NULL) { if ((s = (v27ter_tx_state_t *) malloc(sizeof(*s))) == NULL) return NULL; } memset(s, 0, sizeof(*s)); span_log_init(&s->logging, SPAN_LOG_NONE, NULL); span_log_set_protocol(&s->logging, "V.27ter TX"); s->get_bit = get_bit; s->get_bit_user_data = user_data; s->carrier_phase_rate = dds_phase_ratef(CARRIER_NOMINAL_FREQ); v27ter_tx_power(s, -14.0f); v27ter_tx_restart(s, bit_rate, tep); return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) v27ter_tx_release(v27ter_tx_state_t *s) { return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) v27ter_tx_free(v27ter_tx_state_t *s) { free(s); return 0; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/