view intercom/gsm/add.c @ 3:c6c5a16ce2f2

compilation fixes
author Peter Meerwald <pmeerw@cosy.sbg.ac.at>
date Fri, 25 Jun 2010 09:59:25 +0200
parents 13be24d74cd2
children
line wrap: on
line source

/*
 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
 * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
 * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
 */

/* $Header: /home/kbs/jutta/src/gsm/gsm-1.0/src/RCS/add.c,v 1.2 1993/01/29 18:23:15 jutta Exp $ */

/*
 *  See private.h for the more commonly used macro versions.
 */

#include	<stdio.h>
#include	<assert.h>

#include	"private.h"
#include	"gsm.h"
#include	"proto.h"

#define	saturate(x) 	\
	((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))

word gsm_add P2((a, b), word a, word b)
{
  longword sum = (longword) a + (longword) b;
  return saturate(sum);
}

word gsm_sub P2((a, b), word a, word b)
{
  longword diff = (longword) a - (longword) b;
  return saturate(diff);
}

word gsm_mult P2((a, b), word a, word b)
{
  if (a == MIN_WORD && b == MIN_WORD)
    return MAX_WORD;
  else
    return (word) (SASR((longword) a * (longword) b, 15));
}

word gsm_mult_r P2((a, b), word a, word b)
{
  if (b == MIN_WORD && a == MIN_WORD)
    return MAX_WORD;
  else {
    longword prod = (longword) a * (longword) b + 16384;
    prod >>= 15;
    return prod & 0xFFFF;
  }
}

word gsm_abs P1((a), word a)
{
  return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
}

longword gsm_L_mult P2((a, b), word a, word b)
{
  assert(a != MIN_WORD || b != MIN_WORD);
  return ((longword) a * (longword) b) << 1;
}

longword gsm_L_add P2((a, b), longword a, longword b)
{
  if (a < 0) {
    if (b >= 0)
      return a + b;
    else {
      ulongword A = (ulongword) - (a + 1) + (ulongword) - (b + 1);
      return A >=
        (ulongword) MAX_LONGWORD ? MIN_LONGWORD : -(longword) A - 2;
    }
  } else if (b <= 0)
    return a + b;
  else {
    ulongword A = (ulongword) a + (ulongword) b;
    return A > (ulongword) MAX_LONGWORD ? MAX_LONGWORD : A;
  }
}

longword gsm_L_sub P2((a, b), longword a, longword b)
{
  if (a >= 0) {
    if (b >= 0)
      return a - b;
    else {
      /* a>=0, b<0 */

      ulongword A = (ulongword) a + -(b + 1);
      return A >= (ulongword) MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
    }
  } else if (b <= 0)
    return a - b;
  else {
    /* a<0, b>0 */

    ulongword A = (ulongword) - (a + 1) + b;
    return A >= (ulongword) MAX_LONGWORD ? MIN_LONGWORD : -A - 1;
  }
}

static unsigned char bitoff[256] = {
  8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

word gsm_norm P1((a), longword a)
/*
 * the number of left shifts needed to normalize the 32 bit
 * variable L_var1 for positive values on the interval
 *
 * with minimum of
 * minimum of 1073741824  (01000000000000000000000000000000) and
 * maximum of 2147483647  (01111111111111111111111111111111)
 *
 *
 * and for negative values on the interval with
 * minimum of -2147483648 (-10000000000000000000000000000000) and
 * maximum of -1073741824 ( -1000000000000000000000000000000).
 *
 * in order to normalize the result, the following
 * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
 *
 * (That's 'ffs', only from the left, not the right..)
 */
{
  assert(a != 0);

  if (a < 0) {
    if (a <= (longword) - 1073741824)
      return 0;
    a = ~a;
  }

  return a & 0xffff0000
    ? (a & 0xff000000 ? -1 + bitoff[(unsigned char) (0xFF & (a >> 24))]
    : 7 + bitoff[(unsigned char) (0xFF & (a >> 16))])
    : (a & 0xff00 ? 15 + bitoff[(unsigned char) (0xFF & (a >> 8))]
    : 23 + bitoff[(unsigned char) (0xFF & a)]);
}

longword gsm_L_asl P2((a, n), longword a, int n)
{
  if (n >= 32)
    return 0;
  if (n <= -32)
    return -(a < 0);
  if (n < 0)
    return gsm_asr(a, -n);
  return a << n;
}

word gsm_asl P2((a, n), word a, int n)
{
  if (n >= 16)
    return 0;
  if (n <= -16)
    return -(a < 0);
  if (n < 0)
    return gsm_asr(a, -n);
  return a << n;
}

longword gsm_L_asr P2((a, n), longword a, int n)
{
  if (n >= 32)
    return -(a < 0);
  if (n <= -32)
    return 0;
  if (n < 0)
    return a << -n;

#	ifdef	SASR
  return a >> n;
#	else
  if (a >= 0)
    return a >> n;
  else
    return -(longword) (-(ulongword) a >> n);
#	endif
}

word gsm_asr P2((a, n), word a, int n)
{
  if (n >= 16)
    return -(a < 0);
  if (n <= -16)
    return 0;
  if (n < 0)
    return a << -n;

#	ifdef	SASR
  return a >> n;
#	else
  if (a >= 0)
    return a >> n;
  else
    return -(word) (-(uword) a >> n);
#	endif
}

/* 
 *  (From p. 46, end of section 4.2.5)
 *
 *  NOTE: The following lines gives [sic] one correct implementation
 *  	  of the div(num, denum) arithmetic operation.  Compute div
 *        which is the integer division of num by denum: with denum
 *	  >= num > 0
 */

word gsm_div P2((num, denum), word num, word denum)
{
  longword L_num = num;
  longword L_denum = denum;
  word div = 0;
  int k = 15;

  /* The parameter num sometimes becomes zero.
   * Although this is explicitly guarded against in 4.2.5,
   * we assume that the result should then be zero as well.
   */

  /* assert(num != 0); */

  assert(num >= 0 && denum >= num);
  if (num == 0)
    return 0;

  while (k--) {
    div <<= 1;
    L_num <<= 1;

    if (L_num >= L_denum) {
      L_num -= L_denum;
      div++;
    }
  }

  return div;
}

Repositories maintained by Peter Meerwald, pmeerw@pmeerw.net.