Mercurial > hg > audiostuff
view intercom/gsm/rpe.c @ 3:c6c5a16ce2f2
compilation fixes
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 09:59:25 +0200 |
parents | 13be24d74cd2 |
children |
line wrap: on
line source
/* * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische * Universitaet Berlin. See the accompanying file "COPYRIGHT" for * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. */ /* $Header: /home/kbs/jutta/src/gsm/gsm-1.0/src/RCS/rpe.c,v 1.2 1994/01/25 22:21:15 jutta Exp $ */ #include <stdio.h> #include <assert.h> #include "private.h" #include "gsm.h" #include "proto.h" /* 4.2.13 .. 4.2.17 RPE ENCODING SECTION */ /* 4.2.13 */ static void Weighting_filter P2((e, x), register word * e, /* signal [-5..0.39.44] IN */ word * x /* signal [0..39] OUT */ ) /* * The coefficients of the weighting filter are stored in a table * (see table 4.4). The following scaling is used: * * H[0..10] = integer( real_H[ 0..10] * 8192 ); */ { /* word wt[ 50 ]; */ register longword L_result; register int k /* , i */ ; /* Initialization of a temporary working array wt[0...49] */ /* for (k = 0; k <= 4; k++) wt[k] = 0; * for (k = 5; k <= 44; k++) wt[k] = *e++; * for (k = 45; k <= 49; k++) wt[k] = 0; * * (e[-5..-1] and e[40..44] are allocated by the caller, * are initially zero and are not written anywhere.) */ e -= 5; /* Compute the signal x[0..39] */ for (k = 0; k <= 39; k++) { L_result = 8192 >> 1; /* for (i = 0; i <= 10; i++) { * L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] ); * L_result = GSM_L_ADD( L_result, L_temp ); * } */ #ifdef STEP #undef STEP #endif #define STEP( i, H ) (e[ k + i ] * (longword)H) /* Every one of these multiplications is done twice -- * but I don't see an elegant way to optimize this. * Do you? */ #ifdef STUPID_COMPILER L_result += STEP(0, -134); L_result += STEP(1, -374); /* + STEP( 2, 0 ) */ L_result += STEP(3, 2054); L_result += STEP(4, 5741); L_result += STEP(5, 8192); L_result += STEP(6, 5741); L_result += STEP(7, 2054); /* + STEP( 8, 0 ) */ L_result += STEP(9, -374); L_result += STEP(10, -134); #else L_result += STEP(0, -134) + STEP(1, -374) /* + STEP( 2, 0 ) */ + STEP(3, 2054) + STEP(4, 5741) + STEP(5, 8192) + STEP(6, 5741) + STEP(7, 2054) /* + STEP( 8, 0 ) */ + STEP(9, -374) + STEP(10, -134); #endif /* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *) * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *) * * x[k] = SASR( L_result, 16 ); */ /* 2 adds vs. >>16 => 14, minus one shift to compensate for * those we lost when replacing L_MULT by '*'. */ L_result = SASR(L_result, 13); x[k] = (L_result < MIN_WORD ? MIN_WORD : (L_result > MAX_WORD ? MAX_WORD : L_result)); } } /* 4.2.14 */ static void RPE_grid_selection P3((x, xM, Mc_out), word * x, /* [0..39] IN */ word * xM, /* [0..12] OUT */ word * Mc_out /* OUT */ ) /* * The signal x[0..39] is used to select the RPE grid which is * represented by Mc. */ { /* register word temp1; */ register int /* m, */ i; /* register ulongword utmp; */ register longword L_result, L_temp; longword EM; /* xxx should be L_EM? */ word Mc; longword L_common_0_3; EM = 0; Mc = 0; /* for (m = 0; m <= 3; m++) { * L_result = 0; * * * for (i = 0; i <= 12; i++) { * * temp1 = SASR( x[m + 3*i], 2 ); * * assert(temp1 != MIN_WORD); * * L_temp = GSM_L_MULT( temp1, temp1 ); * L_result = GSM_L_ADD( L_temp, L_result ); * } * * if (L_result > EM) { * Mc = m; * EM = L_result; * } * } */ #undef STEP #define STEP( m, i ) L_temp = SASR( (longword)x[m + 3 * i], 2 ); \ L_result += L_temp * L_temp; /* common part of 0 and 3 */ L_result = 0; STEP(0, 1); STEP(0, 2); STEP(0, 3); STEP(0, 4); STEP(0, 5); STEP(0, 6); STEP(0, 7); STEP(0, 8); STEP(0, 9); STEP(0, 10); STEP(0, 11); STEP(0, 12); L_common_0_3 = L_result; /* i = 0 */ STEP(0, 0); L_result <<= 1; /* implicit in L_MULT */ EM = L_result; /* i = 1 */ L_result = 0; STEP(1, 0); STEP(1, 1); STEP(1, 2); STEP(1, 3); STEP(1, 4); STEP(1, 5); STEP(1, 6); STEP(1, 7); STEP(1, 8); STEP(1, 9); STEP(1, 10); STEP(1, 11); STEP(1, 12); L_result <<= 1; if (L_result > EM) { Mc = 1; EM = L_result; } /* i = 2 */ L_result = 0; STEP(2, 0); STEP(2, 1); STEP(2, 2); STEP(2, 3); STEP(2, 4); STEP(2, 5); STEP(2, 6); STEP(2, 7); STEP(2, 8); STEP(2, 9); STEP(2, 10); STEP(2, 11); STEP(2, 12); L_result <<= 1; if (L_result > EM) { Mc = 2; EM = L_result; } /* i = 3 */ L_result = L_common_0_3; STEP(3, 12); L_result <<= 1; if (L_result > EM) { Mc = 3; EM = L_result; } /**/ /* Down-sampling by a factor 3 to get the selected xM[0..12] * RPE sequence. */ for (i = 0; i <= 12; i++) xM[i] = x[Mc + 3 * i]; *Mc_out = Mc; } /* 4.12.15 */ static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc, exp_out, mant_out), word xmaxc, /* IN */ word * exp_out, /* OUT */ word * mant_out) { /* OUT */ word exp, mant; /* Compute exponent and mantissa of the decoded version of xmaxc */ exp = 0; if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1; mant = xmaxc - (exp << 3); if (mant == 0) { exp = -4; mant = 7; } else { while (mant <= 7) { mant = mant << 1 | 1; exp--; } mant -= 8; } assert(exp >= -4 && exp <= 6); assert(mant >= 0 && mant <= 7); *exp_out = exp; *mant_out = mant; } static void APCM_quantization P5((xM, xMc, mant_out, exp_out, xmaxc_out), word * xM, /* [0..12] IN */ word * xMc, /* [0..12] OUT */ word * mant_out, /* OUT */ word * exp_out, /* OUT */ word * xmaxc_out /* OUT */ ) { int i, itest; /* register longword ltmp; / * for GSM_ADD */ word xmax, xmaxc, temp, temp1, temp2; word exp, mant; /* Find the maximum absolute value xmax of xM[0..12]. */ xmax = 0; for (i = 0; i <= 12; i++) { temp = xM[i]; temp = GSM_ABS(temp); if (temp > xmax) xmax = temp; } /* Qantizing and coding of xmax to get xmaxc. */ exp = 0; temp = SASR(xmax, 9); itest = 0; for (i = 0; i <= 5; i++) { itest |= (temp <= 0); temp = SASR(temp, 1); assert(exp <= 5); if (itest == 0) exp++; /* exp = add (exp, 1) */ } assert(exp <= 6 && exp >= 0); temp = exp + 5; assert(temp <= 11 && temp >= 0); xmaxc = gsm_add(SASR(xmax, temp), exp << 3); /* Quantizing and coding of the xM[0..12] RPE sequence * to get the xMc[0..12] */ APCM_quantization_xmaxc_to_exp_mant(xmaxc, &exp, &mant); /* This computation uses the fact that the decoded version of xmaxc * can be calculated by using the exponent and the mantissa part of * xmaxc (logarithmic table). * So, this method avoids any division and uses only a scaling * of the RPE samples by a function of the exponent. A direct * multiplication by the inverse of the mantissa (NRFAC[0..7] * found in table 4.5) gives the 3 bit coded version xMc[0..12] * of the RPE samples. */ /* Direct computation of xMc[0..12] using table 4.5 */ assert(exp <= 4096 && exp >= -4096); assert(mant >= 0 && mant <= 7); temp1 = 6 - exp; /* normalization by the exponent */ temp2 = gsm_NRFAC[mant]; /* inverse mantissa */ for (i = 0; i <= 12; i++) { assert(temp1 >= 0 && temp1 < 16); temp = xM[i] << temp1; temp = GSM_MULT(temp, temp2); temp = SASR(temp, 12); xMc[i] = temp + 4; /* see note below */ } /* NOTE: This equation is used to make all the xMc[i] positive. */ *mant_out = mant; *exp_out = exp; *xmaxc_out = xmaxc; } /* 4.2.16 */ static void APCM_inverse_quantization P4((xMc, mant, exp, xMp), register word * xMc, /* [0..12] IN */ word mant, word exp, register word * xMp) { /* [0..12] OUT */ /* * This part is for decoding the RPE sequence of coded xMc[0..12] * samples to obtain the xMp[0..12] array. Table 4.6 is used to get * the mantissa of xmaxc (FAC[0..7]). */ int i; word temp, temp1, temp2, temp3; /* ulongword utmp; */ longword ltmp; assert(mant >= 0 && mant <= 7); temp1 = gsm_FAC[mant]; /* see 4.2-15 for mant */ temp2 = gsm_sub(6, exp); /* see 4.2-15 for exp */ temp3 = gsm_asl(1, gsm_sub(temp2, 1)); for (i = 13; i--;) { assert(*xMc <= 7 && *xMc >= 0); /* 3 bit unsigned */ /* temp = gsm_sub( *xMc++ << 1, 7 ); */ temp = (*xMc++ << 1) - 7; /* restore sign */ assert(temp <= 7 && temp >= -7); /* 4 bit signed */ temp <<= 12; /* 16 bit signed */ temp = GSM_MULT_R(temp1, temp); temp = GSM_ADD(temp, temp3); *xMp++ = gsm_asr(temp, temp2); } } /* 4.2.17 */ static void RPE_grid_positioning P3((Mc, xMp, ep), word Mc, /* grid position IN */ register word * xMp, /* [0..12] IN */ register word * ep /* [0..39] OUT */ ) /* * This procedure computes the reconstructed long term residual signal * ep[0..39] for the LTP analysis filter. The inputs are the Mc * which is the grid position selection and the xMp[0..12] decoded * RPE samples which are upsampled by a factor of 3 by inserting zero * values. */ { #if defined(VMS) || defined(__TURBOC__) int k; #endif int i = 13; assert(0 <= Mc && Mc <= 3); #if defined(VMS) || defined(__TURBOC__) for (k = 0; k <= 39; k++) ep[k] = 0; for (i = 0; i <= 12; i++) { ep[Mc + (3 * i)] = xMp[i]; } #else switch (Mc) { case 3: *ep++ = 0; case 2: do { *ep++ = 0; case 1: *ep++ = 0; case 0: *ep++ = *xMp++; } while (--i); } while (++Mc < 4) *ep++ = 0; #endif } /* 4.2.18 */ /* This procedure adds the reconstructed long term residual signal * ep[0..39] to the estimated signal dpp[0..39] from the long term * analysis filter to compute the reconstructed short term residual * signal dp[-40..-1]; also the reconstructed short term residual * array dp[-120..-41] is updated. */ #if 0 /* Has been inlined in code.c */ void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp), word * dpp, /* [0...39] IN */ word * ep, /* [0...39] IN */ word * dp) { /* [-120...-1] IN/OUT */ int k; for (k = 0; k <= 79; k++) dp[-120 + k] = dp[-80 + k]; for (k = 0; k <= 39; k++) dp[-40 + k] = gsm_add(ep[k], dpp[k]); } #endif /* Has been inlined in code.c */ void Gsm_RPE_Encoding P5((S, e, xmaxc, Mc, xMc), struct gsm_state *S, word * e, /* -5..-1][0..39][40..44 IN/OUT */ word * xmaxc, /* OUT */ word * Mc, /* OUT */ word * xMc) { /* [0..12] OUT */ word x[40]; word xM[13], xMp[13]; word mant, exp; Weighting_filter(e, x); RPE_grid_selection(x, xM, Mc); APCM_quantization(xM, xMc, &mant, &exp, xmaxc); APCM_inverse_quantization(xMc, mant, exp, xMp); RPE_grid_positioning(*Mc, xMp, e); } void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp), struct gsm_state *S, word xmaxcr, word Mcr, word * xMcr, /* [0..12], 3 bits IN */ word * erp /* [0..39] OUT */ ) { word exp, mant; word xMp[13]; APCM_quantization_xmaxc_to_exp_mant(xmaxcr, &exp, &mant); APCM_inverse_quantization(xMcr, mant, exp, xMp); RPE_grid_positioning(Mcr, xMp, erp); }