Mercurial > hg > audiostuff
view intercom/gsm/short_te.c @ 6:22a74b01a099 default tip
implement more meaningful test program
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 16:14:50 +0200 (2010-06-25) |
parents | 13be24d74cd2 |
children |
line wrap: on
line source
/* * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische * Universitaet Berlin. See the accompanying file "COPYRIGHT" for * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. */ /* $Header: /home/kbs/jutta/src/gsm/gsm-1.0/src/RCS/short_term.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */ #include <stdio.h> #include <assert.h> #include "private.h" #include "gsm.h" #include "proto.h" /* * SHORT TERM ANALYSIS FILTERING SECTION */ /* 4.2.8 */ static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc, LARpp), word * LARc, /* coded log area ratio [0..7] IN */ word * LARpp) { /* out: decoded .. */ register word temp1; /* register word temp2; -> This is unused */ register long ltmp; /* for GSM_ADD */ /* This procedure requires for efficient implementation * two tables. * * INVA[1..8] = integer( (32768 * 8) / real_A[1..8]) * MIC[1..8] = minimum value of the LARc[1..8] */ /* Compute the LARpp[1..8] */ /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) { * * temp1 = GSM_ADD( *LARc, *MIC ) << 10; * temp2 = *B << 1; * temp1 = GSM_SUB( temp1, temp2 ); * * assert(*INVA != MIN_WORD); * * temp1 = GSM_MULT_R( *INVA, temp1 ); * *LARpp = GSM_ADD( temp1, temp1 ); * } */ #ifdef STEP #undef STEP #endif #define STEP( B, MIC, INVA ) \ temp1 = GSM_ADD( *LARc++, MIC ) << 10; \ temp1 = GSM_SUB( temp1, B << 1 ); \ temp1 = GSM_MULT_R( INVA, temp1 ); \ *LARpp++ = GSM_ADD( temp1, temp1 ); STEP(0, -32, 13107); STEP(0, -32, 13107); STEP(2048, -16, 13107); STEP(-2560, -16, 13107); STEP(94, -8, 19223); STEP(-1792, -8, 17476); STEP(-341, -4, 31454); STEP(-1144, -4, 29708); /* NOTE: the addition of *MIC is used to restore * the sign of *LARc. */ } /* 4.2.9 */ /* Computation of the quantized reflection coefficients */ /* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8] */ /* * Within each frame of 160 analyzed speech samples the short term * analysis and synthesis filters operate with four different sets of * coefficients, derived from the previous set of decoded LARs(LARpp(j-1)) * and the actual set of decoded LARs (LARpp(j)) * * (Initial value: LARpp(j-1)[1..8] = 0.) */ static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp), register word * LARpp_j_1, register word * LARpp_j, register word * LARp) { register int i; register longword ltmp; for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) { *LARp = GSM_ADD(SASR(*LARpp_j_1, 2), SASR(*LARpp_j, 2)); *LARp = GSM_ADD(*LARp, SASR(*LARpp_j_1, 1)); } } static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp), register word * LARpp_j_1, register word * LARpp_j, register word * LARp) { register int i; register longword ltmp; for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { *LARp = GSM_ADD(SASR(*LARpp_j_1, 1), SASR(*LARpp_j, 1)); } } static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp), register word * LARpp_j_1, register word * LARpp_j, register word * LARp) { register int i; register longword ltmp; for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { *LARp = GSM_ADD(SASR(*LARpp_j_1, 2), SASR(*LARpp_j, 2)); *LARp = GSM_ADD(*LARp, SASR(*LARpp_j, 1)); } } static void Coefficients_40_159 P2((LARpp_j, LARp), register word * LARpp_j, register word * LARp) { register int i; for (i = 1; i <= 8; i++, LARp++, LARpp_j++) *LARp = *LARpp_j; } /* 4.2.9.2 */ static void LARp_to_rp P1((LARp), register word * LARp) { /* [0..7] IN/OUT */ /* * The input of this procedure is the interpolated LARp[0..7] array. * The reflection coefficients, rp[i], are used in the analysis * filter and in the synthesis filter. */ register int i; register word temp; register longword ltmp; for (i = 1; i <= 8; i++, LARp++) { /* temp = GSM_ABS( *LARp ); * * if (temp < 11059) temp <<= 1; * else if (temp < 20070) temp += 11059; * else temp = GSM_ADD( temp >> 2, 26112 ); * * *LARp = *LARp < 0 ? -temp : temp; */ if (*LARp < 0) { temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp); *LARp = -((temp < 11059) ? temp << 1 : ((temp < 20070) ? temp + 11059 : GSM_ADD(temp >> 2, 26112))); } else { temp = *LARp; *LARp = (temp < 11059) ? temp << 1 : ((temp < 20070) ? temp + 11059 : GSM_ADD(temp >> 2, 26112)); } } } /* 4.2.10 */ static void Short_term_analysis_filtering P4((S, rp, k_n, s), struct gsm_state *S, register word * rp, /* [0..7] IN */ register int k_n, /* k_end - k_start */ register word * s /* [0..n-1] IN/OUT */ ) /* * This procedure computes the short term residual signal d[..] to be fed * to the RPE-LTP loop from the s[..] signal and from the local rp[..] * array (quantized reflection coefficients). As the call of this * procedure can be done in many ways (see the interpolation of the LAR * coefficient), it is assumed that the computation begins with index * k_start (for arrays d[..] and s[..]) and stops with index k_end * (k_start and k_end are defined in 4.2.9.1). This procedure also * needs to keep the array u[0..7] in memory for each call. */ { register word *u = S->u; register int i; register word di, zzz, ui, sav, rpi; register longword ltmp; for (; k_n--; s++) { di = sav = *s; for (i = 0; i < 8; i++) { /* YYY */ ui = u[i]; rpi = rp[i]; u[i] = sav; zzz = GSM_MULT_R(rpi, di); sav = GSM_ADD(ui, zzz); zzz = GSM_MULT_R(rpi, ui); di = GSM_ADD(di, zzz); } *s = di; } } #if defined(USE_FLOAT_MUL) && defined(FAST) static void Fast_Short_term_analysis_filtering P4((S, rp, k_n, s), struct gsm_state *S, register word * rp, /* [0..7] IN */ register int k_n, /* k_end - k_start */ register word * s /* [0..n-1] IN/OUT */ ) { register word *u = S->u; register int i; float uf[8], rpf[8]; register float scalef = 3.0517578125e-5; register float sav, di, temp; for (i = 0; i < 8; ++i) { uf[i] = u[i]; rpf[i] = rp[i] * scalef; } for (; k_n--; s++) { sav = di = *s; for (i = 0; i < 8; ++i) { register float rpfi = rpf[i]; register float ufi = uf[i]; uf[i] = sav; temp = rpfi * di + ufi; di += rpfi * ufi; sav = temp; } *s = di; } for (i = 0; i < 8; ++i) u[i] = uf[i]; } #endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */ static void Short_term_synthesis_filtering P5((S, rrp, k, wt, sr), struct gsm_state *S, register word * rrp, /* [0..7] IN */ register int k, /* k_end - k_start */ register word * wt, /* [0..k-1] IN */ register word * sr /* [0..k-1] OUT */ ) { register word *v = S->v; register int i; register word sri, tmp1, tmp2; register longword ltmp; /* for GSM_ADD & GSM_SUB */ while (k--) { sri = *wt++; for (i = 8; i--;) { /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) ); */ tmp1 = rrp[i]; tmp2 = v[i]; tmp2 = (tmp1 == MIN_WORD && tmp2 == MIN_WORD ? MAX_WORD : 0x0FFFF & (((longword) tmp1 * (longword) tmp2 + 16384) >> 15)); sri = GSM_SUB(sri, tmp2); /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) ); */ tmp1 = (tmp1 == MIN_WORD && sri == MIN_WORD ? MAX_WORD : 0x0FFFF & (((longword) tmp1 * (longword) sri + 16384) >> 15)); v[i + 1] = GSM_ADD(v[i], tmp1); } *sr++ = v[0] = sri; } } #if defined(FAST) && defined(USE_FLOAT_MUL) static void Fast_Short_term_synthesis_filtering P5((S, rrp, k, wt, sr), struct gsm_state *S, register word * rrp, /* [0..7] IN */ register int k, /* k_end - k_start */ register word * wt, /* [0..k-1] IN */ register word * sr /* [0..k-1] OUT */ ) { register word *v = S->v; register int i; float va[9], rrpa[8]; register float scalef = 3.0517578125e-5, temp; for (i = 0; i < 8; ++i) { va[i] = v[i]; rrpa[i] = (float) rrp[i] * scalef; } while (k--) { register float sri = *wt++; for (i = 8; i--;) { sri -= rrpa[i] * va[i]; if (sri < -32768.) sri = -32768.; else if (sri > 32767.) sri = 32767.; temp = va[i] + rrpa[i] * sri; if (temp < -32768.) temp = -32768.; else if (temp > 32767.) temp = 32767.; va[i + 1] = temp; } *sr++ = va[0] = sri; } for (i = 0; i < 9; ++i) v[i] = va[i]; } #endif /* defined(FAST) && defined(USE_FLOAT_MUL) */ void Gsm_Short_Term_Analysis_Filter P3((S, LARc, s), struct gsm_state *S, word * LARc, /* coded log area ratio [0..7] IN */ word * s /* signal [0..159] IN/OUT */ ) { word *LARpp_j = S->LARpp[S->j]; word *LARpp_j_1 = S->LARpp[S->j ^= 1]; word LARp[8]; #ifdef FILTER #undef FILTER #endif #if defined(FAST) && defined(USE_FLOAT_MUL) # define FILTER (* (S->fast \ ? Fast_Short_term_analysis_filtering \ : Short_term_analysis_filtering )) #else # define FILTER Short_term_analysis_filtering #endif Decoding_of_the_coded_Log_Area_Ratios(LARc, LARpp_j); Coefficients_0_12(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); FILTER(S, LARp, 13, s); Coefficients_13_26(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); FILTER(S, LARp, 14, s + 13); Coefficients_27_39(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); FILTER(S, LARp, 13, s + 27); Coefficients_40_159(LARpp_j, LARp); LARp_to_rp(LARp); FILTER(S, LARp, 120, s + 40); } void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s), struct gsm_state *S, word * LARcr, /* received log area ratios [0..7] IN */ word * wt, /* received d [0..159] IN */ word * s /* signal s [0..159] OUT */ ) { word *LARpp_j = S->LARpp[S->j]; word *LARpp_j_1 = S->LARpp[S->j ^= 1]; word LARp[8]; #ifdef FILTER #undef FILTER #endif #if defined(FAST) && defined(USE_FLOAT_MUL) # define FILTER (* (S->fast \ ? Fast_Short_term_synthesis_filtering \ : Short_term_synthesis_filtering )) #else # define FILTER Short_term_synthesis_filtering #endif Decoding_of_the_coded_Log_Area_Ratios(LARcr, LARpp_j); Coefficients_0_12(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); FILTER(S, LARp, 13, wt, s); Coefficients_13_26(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); FILTER(S, LARp, 14, wt + 13, s + 13); Coefficients_27_39(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); FILTER(S, LARp, 13, wt + 27, s + 27); Coefficients_40_159(LARpp_j, LARp); LARp_to_rp(LARp); FILTER(S, LARp, 120, wt + 40, s + 40); }