Mercurial > hg > pymctf
comparison pymctf.py @ 0:4214d9245f8e
import
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Thu, 06 Sep 2007 13:45:48 +0200 |
parents | |
children | b67c5ec1a9f0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:4214d9245f8e |
---|---|
1 # MCTF following Ohm04a | |
2 | |
3 import Image | |
4 import ImageDraw | |
5 import pywt | |
6 import numpy | |
7 import math | |
8 import sys | |
9 import time | |
10 import _me | |
11 | |
12 # type of motion vectors | |
13 UNCONNECTED = -(sys.maxint) | |
14 CONNECTED = -(sys.maxint-1) | |
15 MULTIPLE_CONNECTED = -(sys.maxint-2) | |
16 | |
17 # temporal low-pass frame position | |
18 LEFT = -1 | |
19 MIDDLE = 0 | |
20 RIGHT = 1 | |
21 | |
22 def me(a, refblock, rc, cc, sr): | |
23 min_sad = sys.maxint | |
24 min_r, min_c = 0, 0 | |
25 bs = refblock.shape[0] | |
26 for rs in xrange(max(0,rc-sr),min(a.shape[0]-bs,rc+sr)+1): | |
27 for cs in xrange(max(0,cc-sr),min(cc+sr,a.shape[1]-bs)+1): | |
28 sad = numpy.sum(numpy.abs(refblock - a[rs:rs+bs, cs:cs+bs])) | |
29 if sad < min_sad: | |
30 # found new local block SAD minimum, store motion vector | |
31 min_r, min_c, min_sad = rs, cs, sad | |
32 return min_r, min_c, min_sad | |
33 | |
34 def motion_estimation(a, b, blocksize=8, searchrange=8, hlevel=2): | |
35 ''' | |
36 Hierarchical motion estimation from frame a to frame b. | |
37 Parameters are blocksize, searchrange and search hierarchy level. | |
38 Precision is full pixel only. | |
39 Returns the sum-of-absolute-differences (SAD) and the motion | |
40 vector field (MVF). | |
41 ''' | |
42 | |
43 mvf = numpy.zeros((b.shape[0], b.shape[1], 3), numpy.int) | |
44 mvf[:,:,2] = UNCONNECTED | |
45 | |
46 ref = numpy.asarray(b, numpy.float) | |
47 | |
48 # downsample frame data using Haar wavelet | |
49 w = pywt.Wavelet('haar') | |
50 ha = pywt.wavedec2(a, w, level=hlevel) | |
51 href = pywt.wavedec2(ref, w, level=hlevel) | |
52 | |
53 # grows by 2 for every level | |
54 hbs = blocksize//2**hlevel | |
55 hsr = searchrange//2**hlevel | |
56 | |
57 while True: | |
58 total_sad = 0.0 | |
59 _2hlevel = 2**hlevel | |
60 for r in xrange(0, href[0].shape[0], hbs): | |
61 for c in xrange(0, href[0].shape[1], hbs): | |
62 rm = r * _2hlevel | |
63 cm = c * _2hlevel | |
64 | |
65 # set center of new search of previously found vector at higher level | |
66 if mvf[rm,cm,2] >= 0: rc, cc = mvf[rm,cm,0]*2 + r, mvf[rm,cm,1]*2 + c | |
67 else: rc, cc = r, c | |
68 rs, cs, sad = _me.me(ha[0], href[0][r:r+hbs,c:c+hbs], rc, cc, hsr) | |
69 mvf[rm:rm+blocksize,cm:cm+blocksize,:] = rs - r, cs - c, int(sad) | |
70 total_sad += sad | |
71 | |
72 if hlevel == 0: break | |
73 | |
74 # upsample frame data using Haar wavelet | |
75 ha = [pywt.waverec2(ha[:2], w)] + ha[2:] | |
76 href = [pywt.waverec2(href[:2], w)] + href[2:] | |
77 hbs *= 2 | |
78 hlevel -= 1 | |
79 | |
80 return total_sad, mvf | |
81 | |
82 def ft_mvf(a, b, mvf, imvf, bs=8): | |
83 ''' | |
84 Motion-compensated temporal decomposition between frame a and b | |
85 using Haar wavelet applying a given forward and inverse motion field. | |
86 ''' | |
87 | |
88 H = numpy.empty(a.shape, numpy.float) | |
89 L = numpy.empty(a.shape, numpy.float) | |
90 | |
91 i0 = numpy.indices((bs,bs))[0] | |
92 i1 = numpy.indices((bs,bs))[1] | |
93 | |
94 for r in xrange(0, a.shape[0], bs): | |
95 for c in xrange(0, a.shape[1], bs): | |
96 rm = mvf[r, c, 0] + r | |
97 cm = mvf[r, c, 1] + c | |
98 H[r:r+bs, c:c+bs] = numpy.asarray(a[r:r+bs,c:c+bs], numpy.float) - b[rm:rm+bs,cm:cm+bs] | |
99 rm = r + imvf[r:r+bs,c:c+bs,0] + i0 | |
100 cm = c + imvf[r:r+bs,c:c+bs,1] + i1 | |
101 _a = a[rm, cm] | |
102 L[r:r+bs, c:c+bs] = numpy.where( \ | |
103 imvf[r:r+bs, c:c+bs, 2] == UNCONNECTED, \ | |
104 numpy.asarray(b[r:r+bs, c:c+bs], numpy.float), \ | |
105 0.5 * (numpy.asarray(b[r:r+bs, c:c+bs], numpy.float) + _a)) | |
106 | |
107 return L, H | |
108 | |
109 def it_mvf(L, H, mvf, imvf, bs=8): | |
110 ''' | |
111 Reconstruction of two frames a and b from temporal low- and high-pass subband | |
112 using Haar wavelet and applying the given forward and inverse motion field. | |
113 ''' | |
114 | |
115 i0 = numpy.indices((bs,bs))[0] | |
116 i1 = numpy.indices((bs,bs))[1] | |
117 | |
118 b = numpy.empty(L.shape, numpy.float) | |
119 for r in xrange(0, L.shape[0], bs): | |
120 for c in xrange(0, L.shape[1], bs): | |
121 _L = L[r:r+bs,c:c+bs] | |
122 rm = r + imvf[r:r+bs,c:c+bs,0] + i0 | |
123 cm = c + imvf[r:r+bs,c:c+bs,1] + i1 | |
124 _H = H[rm, cm] | |
125 b[r:r+bs,c:c+bs] = numpy.where( \ | |
126 imvf[r:r+bs,c:c+bs,2] == UNCONNECTED, \ | |
127 _L, \ | |
128 _L - 0.5 * _H) | |
129 | |
130 a = numpy.empty(L.shape, numpy.float) | |
131 for r in xrange(0, L.shape[0], bs): | |
132 for c in xrange(0, L.shape[1], bs): | |
133 rm = mvf[r, c, 0] + r | |
134 cm = mvf[r, c, 1] + c | |
135 _H = H[r:r+bs,c:c+bs] | |
136 a[r:r+bs, c:c+bs] = numpy.where( \ | |
137 mvf[r:r+bs,c:c+bs,2] == MULTIPLE_CONNECTED, \ | |
138 b[rm:rm+bs,cm:cm+bs] + _H, \ | |
139 L[rm:rm+bs,cm:cm+bs] + 0.5 * _H) | |
140 | |
141 return a, b | |
142 | |
143 def _show_mv_dist(mvf, idx=0, level=0, sr=8, fname='mv_dist'): | |
144 im = Image.new('RGB', (mvf.shape[1], mvf.shape[0])) | |
145 d = ImageDraw.Draw(im) | |
146 | |
147 for r in xrange(mvf.shape[0]): | |
148 for c in xrange(mvf.shape[1]): | |
149 mv = mvf[r][c] | |
150 | |
151 if sr > 0: w = int(math.sqrt(mv[0]**2 + mv[1]**2)*255/(sr*math.sqrt(2.0))) | |
152 else: w = 0 | |
153 | |
154 if mv[2] >= 0 or mv[2] == CONNECTED: color = (0, w, 0) | |
155 elif mv[2] == UNCONNECTED: color = (255, 0, 0) | |
156 elif mv[2] == MULTIPLE_CONNECTED: color = (0, 0, w) | |
157 | |
158 d.point((c, r), fill=color) | |
159 | |
160 del d | |
161 im.save('%s-%02d-%04d.png' % (fname, level, idx), 'PNG') | |
162 del im | |
163 | |
164 def show_mvf(mvf, imvf, idx=0, level=0, bs=8, sr=8): | |
165 ''' | |
166 Visualize the motion field as .png and output motion vectors to .txt. | |
167 ''' | |
168 | |
169 im = Image.new('RGB', (mvf.shape[1]*2, mvf.shape[0]*2)) | |
170 d = ImageDraw.Draw(im) | |
171 f = open('mv-%02d-%04d.txt' % (level, idx), 'wt') | |
172 sad = mvf[:,:,2].ravel() | |
173 sad_min = numpy.min(numpy.where(sad < 0.0, 0, sad)) | |
174 sad_max = numpy.max(sad) | |
175 for r in xrange(0,mvf.shape[0],bs): | |
176 for c in xrange(0,mvf.shape[1],bs): | |
177 mv = mvf[r][c] | |
178 print >>f, '(%d %d)' % (mv[1], mv[0]), | |
179 | |
180 # fill block according to SAD | |
181 if sad_max > 0 and mv[2] > 0: | |
182 d.rectangle([(c*2,r*2),(c*2+bs*2,r*2+bs*2)], fill=((mv[2]-sad_min)*255/sad_max,0,0)) | |
183 | |
184 # draw motion vector | |
185 if sr > 0: w = int(math.sqrt(mv[0]**2 + mv[1]**2)/(sr*math.sqrt(2.0))) | |
186 else: w = 0 | |
187 | |
188 d.line([ \ | |
189 (c*2+bs, r*2+bs), \ | |
190 (c*2+bs+mv[1]*2, r*2+bs+mv[0]*2)], \ | |
191 fill=(0,int(32+(255-32)*w),0)) | |
192 d.point((c*2+bs, r*2+bs), fill=(255,255,255)) | |
193 | |
194 print >>f | |
195 print >>f | |
196 | |
197 f.close() | |
198 del d | |
199 | |
200 im.save('mv-%02d-%04d.png' % (level, idx), 'PNG') | |
201 del im | |
202 | |
203 _show_mv_dist(mvf, idx, level, sr, 'mvf_dist') | |
204 _show_mv_dist(imvf, idx, level, sr, 'mvi_dist') | |
205 | |
206 | |
207 def inverse_mvf(mvf, bs=8): | |
208 ''' | |
209 Compute the inverse of the motion field. | |
210 ''' | |
211 | |
212 imvf = numpy.zeros((mvf.shape[0], mvf.shape[1], 3), numpy.int) | |
213 imvf[:,:,2] = UNCONNECTED | |
214 for r in xrange(0, mvf.shape[0], bs): | |
215 for c in xrange(0, mvf.shape[1], bs): | |
216 rm = mvf[r,c,0] + r | |
217 cm = mvf[r,c,1] + c | |
218 | |
219 blockmvf = mvf[r:r+bs,c:c+bs] | |
220 blockimvf = imvf[rm:rm+bs,cm:cm+bs] | |
221 | |
222 # mark multiple connected in forward motion field if pixel already connected | |
223 numpy.place(blockmvf[:,:,2], blockimvf[:,:,2] > UNCONNECTED, MULTIPLE_CONNECTED) | |
224 | |
225 # invert motion vector and store in inverse motion field, mark pixel as connected | |
226 unconnected = blockimvf[:,:,2] == UNCONNECTED | |
227 numpy.place(blockimvf[:,:,0], unconnected, -mvf[r,c,0]) | |
228 numpy.place(blockimvf[:,:,1], unconnected, -mvf[r,c,1]) | |
229 numpy.place(blockimvf[:,:,2], unconnected, CONNECTED) | |
230 | |
231 return mvf, imvf | |
232 | |
233 def decompose_sequence(seq, Hs=[], MVFs=[], bs=8, sr=8, hlevel=2, tlp=MIDDLE, visualize_mvf=False, dlevel=-1): | |
234 ''' | |
235 Recursively decompose frame sequence using motion-compensated temporal filtering | |
236 employing the parameters blocksize, searchrange and hierarchy level for motion estimation. | |
237 | |
238 Output is [L], [H0, H1, H1, H2, H2, H2, H2], [MVF0, MVF1, MVF1, MVF2, MVF2, MVF2, MVF2] for | |
239 a sequence of length 8. | |
240 | |
241 The tlp argument allows to move the temporal low-pass frame to the left, | |
242 middle or right. | |
243 ''' | |
244 Ls = [] | |
245 if dlevel < 0: dlevel = int(math.log(len(seq), 2)) | |
246 | |
247 if len(seq) == 1: | |
248 return seq, Hs, MVFs | |
249 | |
250 if tlp == RIGHT: left = 0; mid = len(seq); right = 0 | |
251 elif tlp == LEFT: left = 0; mid = 0; right = len(seq) | |
252 else: left = 0; mid = max(len(seq)/2, 2); right = len(seq) | |
253 | |
254 for i in xrange(left, mid, 2): | |
255 sad, mvf = motion_estimation(seq[i+1], seq[i], bs, sr, hlevel) | |
256 mvf, imvf = inverse_mvf(mvf, bs) | |
257 if visualize_mvf: | |
258 show_mvf(mvf, imvf, i, dlevel-1, bs, sr) | |
259 MVFs.insert(i//2, mvf) | |
260 L, H = ft_mvf(seq[i], seq[i+1], mvf, imvf, bs) | |
261 Ls.append(L) | |
262 Hs.insert(i//2, H) | |
263 | |
264 for i in xrange(mid, right, 2): | |
265 sad, mvf = motion_estimation(seq[i], seq[i+1], bs, sr, hlevel) | |
266 mvf, imvf = inverse_mvf(mvf, bs) | |
267 if visualize_mvf: | |
268 show_mvf(mvf, imvf, i, dlevel-1, bs, sr) | |
269 MVFs.insert(i//2, mvf) | |
270 L, H = ft_mvf(seq[i+1], seq[i], mvf, imvf, bs) | |
271 Ls.append(L) | |
272 Hs.insert(i//2, H) | |
273 | |
274 return decompose_sequence(Ls, Hs, MVFs, bs, sr, hlevel, tlp, visualize_mvf, dlevel-1) | |
275 | |
276 def reconstruct_sequence(seq, Hs, MVFs, bs=8, tlp=MIDDLE): | |
277 ''' | |
278 Recursively reconstruct a frame sequence from temporal low- and high-pass subbands | |
279 and motion fields. | |
280 ''' | |
281 | |
282 Ls = [] | |
283 | |
284 if len(Hs) == 0: | |
285 return seq | |
286 | |
287 if tlp == RIGHT: left = 0; mid = len(seq); right = 0 | |
288 elif tlp == LEFT: left = 0; mid = 0; right = len(seq) | |
289 else: left = 0; mid = max(len(seq)/2, 1); right = len(seq) | |
290 | |
291 for i in xrange(0, mid): | |
292 mvf = MVFs[0] | |
293 mvf, imvf = inverse_mvf(mvf, bs) | |
294 a, b = it_mvf(seq[i], Hs[0], mvf, imvf, bs) | |
295 Ls += [a] + [b] | |
296 del Hs[0] | |
297 del MVFs[0] | |
298 | |
299 for i in xrange(mid, right): | |
300 mvf = MVFs[0] | |
301 mvf, imvf = inverse_mvf(mvf, bs) | |
302 a, b = it_mvf(seq[i], Hs[0], mvf, imvf, bs) | |
303 Ls += [b] + [a] | |
304 del Hs[0] | |
305 del MVFs[0] | |
306 | |
307 return reconstruct_sequence(Ls, Hs, MVFs, bs, tlp) | |
308 |