diff pymctf.py @ 0:4214d9245f8e

import
author Peter Meerwald <pmeerw@cosy.sbg.ac.at>
date Thu, 06 Sep 2007 13:45:48 +0200
parents
children b67c5ec1a9f0
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/pymctf.py	Thu Sep 06 13:45:48 2007 +0200
@@ -0,0 +1,308 @@
+# MCTF following Ohm04a
+
+import Image
+import ImageDraw
+import pywt
+import numpy
+import math
+import sys
+import time
+import _me
+
+# type of motion vectors
+UNCONNECTED = -(sys.maxint)
+CONNECTED = -(sys.maxint-1)
+MULTIPLE_CONNECTED = -(sys.maxint-2)
+
+# temporal low-pass frame position
+LEFT = -1
+MIDDLE = 0
+RIGHT = 1
+
+def me(a, refblock, rc, cc, sr):
+    min_sad = sys.maxint
+    min_r, min_c = 0, 0
+    bs = refblock.shape[0]
+    for rs in xrange(max(0,rc-sr),min(a.shape[0]-bs,rc+sr)+1):
+        for cs in xrange(max(0,cc-sr),min(cc+sr,a.shape[1]-bs)+1):
+            sad = numpy.sum(numpy.abs(refblock - a[rs:rs+bs, cs:cs+bs]))
+            if sad < min_sad:
+                # found new local block SAD minimum, store motion vector
+                min_r, min_c, min_sad = rs, cs, sad
+    return min_r, min_c, min_sad
+    
+def motion_estimation(a, b, blocksize=8, searchrange=8, hlevel=2):
+    '''
+    Hierarchical motion estimation from frame a to frame b.
+    Parameters are blocksize, searchrange and search hierarchy level.
+    Precision is full pixel only.
+    Returns the sum-of-absolute-differences (SAD) and the motion 
+    vector field (MVF).
+    '''
+
+    mvf = numpy.zeros((b.shape[0], b.shape[1], 3), numpy.int)
+    mvf[:,:,2] = UNCONNECTED
+    
+    ref = numpy.asarray(b, numpy.float)
+
+    # downsample frame data using Haar wavelet
+    w = pywt.Wavelet('haar')
+    ha = pywt.wavedec2(a, w, level=hlevel)
+    href = pywt.wavedec2(ref, w, level=hlevel)
+    
+    # grows by 2 for every level
+    hbs = blocksize//2**hlevel 
+    hsr = searchrange//2**hlevel
+    
+    while True:
+        total_sad = 0.0
+        _2hlevel = 2**hlevel
+        for r in xrange(0, href[0].shape[0], hbs):
+            for c in xrange(0, href[0].shape[1], hbs):
+                rm = r * _2hlevel
+                cm = c * _2hlevel
+
+                # set center of new search of previously found vector at higher level
+                if mvf[rm,cm,2] >= 0: rc, cc = mvf[rm,cm,0]*2 + r, mvf[rm,cm,1]*2 + c
+                else: rc, cc = r, c
+                rs, cs, sad = _me.me(ha[0], href[0][r:r+hbs,c:c+hbs], rc, cc, hsr)
+                mvf[rm:rm+blocksize,cm:cm+blocksize,:] = rs - r, cs - c, int(sad)
+                total_sad += sad
+                
+        if hlevel == 0: break
+        
+        # upsample frame data using Haar wavelet
+        ha = [pywt.waverec2(ha[:2], w)] + ha[2:]
+        href = [pywt.waverec2(href[:2], w)] + href[2:]
+        hbs *= 2
+        hlevel -= 1
+
+    return total_sad, mvf  
+
+def ft_mvf(a, b, mvf, imvf, bs=8):
+    '''
+    Motion-compensated temporal decomposition between frame a and b 
+    using Haar wavelet applying a given forward and inverse motion field.
+    '''
+    
+    H = numpy.empty(a.shape, numpy.float)
+    L = numpy.empty(a.shape, numpy.float)
+
+    i0 = numpy.indices((bs,bs))[0]
+    i1 = numpy.indices((bs,bs))[1]
+
+    for r in xrange(0, a.shape[0], bs):
+        for c in xrange(0, a.shape[1], bs):
+            rm = mvf[r, c, 0] + r
+            cm = mvf[r, c, 1] + c
+            H[r:r+bs, c:c+bs] = numpy.asarray(a[r:r+bs,c:c+bs], numpy.float) - b[rm:rm+bs,cm:cm+bs]
+            rm = r + imvf[r:r+bs,c:c+bs,0] + i0
+            cm = c + imvf[r:r+bs,c:c+bs,1] + i1
+            _a = a[rm, cm]
+            L[r:r+bs, c:c+bs] = numpy.where( \
+                imvf[r:r+bs, c:c+bs, 2] == UNCONNECTED, \
+                numpy.asarray(b[r:r+bs, c:c+bs], numpy.float), \
+                0.5 * (numpy.asarray(b[r:r+bs, c:c+bs], numpy.float) + _a))
+
+    return L, H
+
+def it_mvf(L, H, mvf, imvf, bs=8):
+    '''
+    Reconstruction of two frames a and b from temporal low- and high-pass subband 
+    using Haar wavelet and applying the given forward and inverse motion field.
+    '''
+
+    i0 = numpy.indices((bs,bs))[0]
+    i1 = numpy.indices((bs,bs))[1]
+
+    b = numpy.empty(L.shape, numpy.float)
+    for r in xrange(0, L.shape[0], bs):
+        for c in xrange(0, L.shape[1], bs):
+            _L = L[r:r+bs,c:c+bs]
+            rm = r + imvf[r:r+bs,c:c+bs,0] + i0
+            cm = c + imvf[r:r+bs,c:c+bs,1] + i1
+            _H = H[rm, cm]
+            b[r:r+bs,c:c+bs] = numpy.where( \
+                imvf[r:r+bs,c:c+bs,2] == UNCONNECTED, \
+                _L, \
+                _L - 0.5 * _H)
+                
+    a = numpy.empty(L.shape, numpy.float)
+    for r in xrange(0, L.shape[0], bs):
+        for c in xrange(0, L.shape[1], bs):
+            rm = mvf[r, c, 0] + r
+            cm = mvf[r, c, 1] + c
+            _H = H[r:r+bs,c:c+bs]
+            a[r:r+bs, c:c+bs] = numpy.where( \
+                mvf[r:r+bs,c:c+bs,2] == MULTIPLE_CONNECTED, \
+                b[rm:rm+bs,cm:cm+bs] + _H, \
+                L[rm:rm+bs,cm:cm+bs] + 0.5 * _H)
+
+    return a, b
+
+def _show_mv_dist(mvf, idx=0, level=0, sr=8, fname='mv_dist'):
+    im = Image.new('RGB', (mvf.shape[1], mvf.shape[0]))
+    d = ImageDraw.Draw(im)
+    
+    for r in xrange(mvf.shape[0]):
+        for c in xrange(mvf.shape[1]):
+            mv = mvf[r][c]
+            
+            if sr > 0: w = int(math.sqrt(mv[0]**2 + mv[1]**2)*255/(sr*math.sqrt(2.0)))
+            else: w = 0
+            
+            if mv[2] >= 0 or mv[2] == CONNECTED: color = (0, w, 0)
+            elif mv[2] == UNCONNECTED: color = (255, 0, 0)
+            elif mv[2] == MULTIPLE_CONNECTED: color = (0, 0, w)
+            
+            d.point((c, r), fill=color)
+
+    del d
+    im.save('%s-%02d-%04d.png' % (fname, level, idx), 'PNG')
+    del im
+
+def show_mvf(mvf, imvf, idx=0, level=0, bs=8, sr=8):
+    '''
+    Visualize the motion field as .png and output motion vectors to .txt.
+    '''
+    
+    im = Image.new('RGB', (mvf.shape[1]*2, mvf.shape[0]*2))
+    d = ImageDraw.Draw(im)
+    f = open('mv-%02d-%04d.txt' % (level, idx), 'wt')
+    sad = mvf[:,:,2].ravel()
+    sad_min = numpy.min(numpy.where(sad < 0.0, 0, sad))
+    sad_max = numpy.max(sad)
+    for r in xrange(0,mvf.shape[0],bs):
+        for c in xrange(0,mvf.shape[1],bs):
+            mv = mvf[r][c]
+            print >>f, '(%d %d)' % (mv[1], mv[0]),
+            
+            # fill block according to SAD
+            if sad_max > 0 and mv[2] > 0: 
+                d.rectangle([(c*2,r*2),(c*2+bs*2,r*2+bs*2)], fill=((mv[2]-sad_min)*255/sad_max,0,0))
+
+            # draw motion vector
+            if sr > 0: w = int(math.sqrt(mv[0]**2 + mv[1]**2)/(sr*math.sqrt(2.0)))
+            else: w = 0
+            
+            d.line([ \
+                (c*2+bs, r*2+bs), \
+                (c*2+bs+mv[1]*2, r*2+bs+mv[0]*2)], \
+                fill=(0,int(32+(255-32)*w),0))
+            d.point((c*2+bs, r*2+bs), fill=(255,255,255))
+
+        print >>f
+    print >>f
+
+    f.close()
+    del d
+
+    im.save('mv-%02d-%04d.png' % (level, idx), 'PNG')
+    del im
+    
+    _show_mv_dist(mvf, idx, level, sr, 'mvf_dist')
+    _show_mv_dist(imvf, idx, level, sr, 'mvi_dist')
+    
+
+def inverse_mvf(mvf, bs=8):
+    '''
+    Compute the inverse of the motion field.
+    '''
+
+    imvf = numpy.zeros((mvf.shape[0], mvf.shape[1], 3), numpy.int)
+    imvf[:,:,2] = UNCONNECTED
+    for r in xrange(0, mvf.shape[0], bs):
+        for c in xrange(0, mvf.shape[1], bs):
+            rm = mvf[r,c,0] + r
+            cm = mvf[r,c,1] + c
+
+            blockmvf = mvf[r:r+bs,c:c+bs]
+            blockimvf = imvf[rm:rm+bs,cm:cm+bs]
+
+            # mark multiple connected in forward motion field if pixel already connected
+            numpy.place(blockmvf[:,:,2], blockimvf[:,:,2] > UNCONNECTED, MULTIPLE_CONNECTED)
+
+            # invert motion vector and store in inverse motion field, mark pixel as connected
+            unconnected = blockimvf[:,:,2] == UNCONNECTED
+            numpy.place(blockimvf[:,:,0], unconnected, -mvf[r,c,0])
+            numpy.place(blockimvf[:,:,1], unconnected, -mvf[r,c,1])
+            numpy.place(blockimvf[:,:,2], unconnected, CONNECTED)
+
+    return mvf, imvf
+
+def decompose_sequence(seq, Hs=[], MVFs=[], bs=8, sr=8, hlevel=2, tlp=MIDDLE, visualize_mvf=False, dlevel=-1):
+    '''
+    Recursively decompose frame sequence using motion-compensated temporal filtering 
+    employing the parameters blocksize, searchrange and hierarchy level for motion estimation.
+    
+    Output is [L], [H0, H1, H1, H2, H2, H2, H2], [MVF0, MVF1, MVF1, MVF2, MVF2, MVF2, MVF2] for
+    a sequence of length 8.
+    
+    The tlp argument allows to move the temporal low-pass frame to the left, 
+    middle or right.
+    '''
+    Ls = []
+    if dlevel < 0: dlevel = int(math.log(len(seq), 2))
+
+    if len(seq) == 1:
+        return seq, Hs, MVFs
+
+    if tlp == RIGHT: left = 0; mid = len(seq); right = 0
+    elif tlp == LEFT: left = 0; mid = 0; right = len(seq)
+    else: left = 0; mid = max(len(seq)/2, 2); right = len(seq)
+    
+    for i in xrange(left, mid, 2):
+        sad, mvf = motion_estimation(seq[i+1], seq[i], bs, sr, hlevel)
+        mvf, imvf = inverse_mvf(mvf, bs)
+        if visualize_mvf: 
+            show_mvf(mvf, imvf, i, dlevel-1, bs, sr) 
+        MVFs.insert(i//2, mvf)
+        L, H = ft_mvf(seq[i], seq[i+1], mvf, imvf, bs)
+        Ls.append(L)
+        Hs.insert(i//2, H)
+
+    for i in xrange(mid, right, 2):
+        sad, mvf = motion_estimation(seq[i], seq[i+1], bs, sr, hlevel)
+        mvf, imvf = inverse_mvf(mvf, bs)
+        if visualize_mvf: 
+            show_mvf(mvf, imvf, i, dlevel-1, bs, sr) 
+        MVFs.insert(i//2, mvf)
+        L, H = ft_mvf(seq[i+1], seq[i], mvf, imvf, bs)
+        Ls.append(L)
+        Hs.insert(i//2, H)
+
+    return decompose_sequence(Ls, Hs, MVFs, bs, sr, hlevel, tlp, visualize_mvf, dlevel-1)
+
+def reconstruct_sequence(seq, Hs, MVFs, bs=8, tlp=MIDDLE):
+    '''
+    Recursively reconstruct a frame sequence from temporal low- and high-pass subbands
+    and motion fields.
+    '''
+
+    Ls = []
+
+    if len(Hs) == 0:
+      return seq
+
+    if tlp == RIGHT: left = 0; mid = len(seq); right = 0
+    elif tlp == LEFT: left = 0; mid = 0; right = len(seq)
+    else: left = 0; mid = max(len(seq)/2, 1); right = len(seq)
+    
+    for i in xrange(0, mid):
+        mvf = MVFs[0]
+        mvf, imvf = inverse_mvf(mvf, bs)
+        a, b = it_mvf(seq[i], Hs[0], mvf, imvf, bs)
+        Ls += [a] + [b]
+        del Hs[0]
+        del MVFs[0]
+
+    for i in xrange(mid, right):
+        mvf = MVFs[0]
+        mvf, imvf = inverse_mvf(mvf, bs)
+        a, b = it_mvf(seq[i], Hs[0], mvf, imvf, bs)
+        Ls += [b] + [a]
+        del Hs[0]
+        del MVFs[0]
+
+    return reconstruct_sequence(Ls, Hs, MVFs, bs, tlp)
+

Repositories maintained by Peter Meerwald, pmeerw@pmeerw.net.