Mercurial > hg > pymctf
diff pymctf.py @ 0:4214d9245f8e
import
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Thu, 06 Sep 2007 13:45:48 +0200 |
parents | |
children | b67c5ec1a9f0 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pymctf.py Thu Sep 06 13:45:48 2007 +0200 @@ -0,0 +1,308 @@ +# MCTF following Ohm04a + +import Image +import ImageDraw +import pywt +import numpy +import math +import sys +import time +import _me + +# type of motion vectors +UNCONNECTED = -(sys.maxint) +CONNECTED = -(sys.maxint-1) +MULTIPLE_CONNECTED = -(sys.maxint-2) + +# temporal low-pass frame position +LEFT = -1 +MIDDLE = 0 +RIGHT = 1 + +def me(a, refblock, rc, cc, sr): + min_sad = sys.maxint + min_r, min_c = 0, 0 + bs = refblock.shape[0] + for rs in xrange(max(0,rc-sr),min(a.shape[0]-bs,rc+sr)+1): + for cs in xrange(max(0,cc-sr),min(cc+sr,a.shape[1]-bs)+1): + sad = numpy.sum(numpy.abs(refblock - a[rs:rs+bs, cs:cs+bs])) + if sad < min_sad: + # found new local block SAD minimum, store motion vector + min_r, min_c, min_sad = rs, cs, sad + return min_r, min_c, min_sad + +def motion_estimation(a, b, blocksize=8, searchrange=8, hlevel=2): + ''' + Hierarchical motion estimation from frame a to frame b. + Parameters are blocksize, searchrange and search hierarchy level. + Precision is full pixel only. + Returns the sum-of-absolute-differences (SAD) and the motion + vector field (MVF). + ''' + + mvf = numpy.zeros((b.shape[0], b.shape[1], 3), numpy.int) + mvf[:,:,2] = UNCONNECTED + + ref = numpy.asarray(b, numpy.float) + + # downsample frame data using Haar wavelet + w = pywt.Wavelet('haar') + ha = pywt.wavedec2(a, w, level=hlevel) + href = pywt.wavedec2(ref, w, level=hlevel) + + # grows by 2 for every level + hbs = blocksize//2**hlevel + hsr = searchrange//2**hlevel + + while True: + total_sad = 0.0 + _2hlevel = 2**hlevel + for r in xrange(0, href[0].shape[0], hbs): + for c in xrange(0, href[0].shape[1], hbs): + rm = r * _2hlevel + cm = c * _2hlevel + + # set center of new search of previously found vector at higher level + if mvf[rm,cm,2] >= 0: rc, cc = mvf[rm,cm,0]*2 + r, mvf[rm,cm,1]*2 + c + else: rc, cc = r, c + rs, cs, sad = _me.me(ha[0], href[0][r:r+hbs,c:c+hbs], rc, cc, hsr) + mvf[rm:rm+blocksize,cm:cm+blocksize,:] = rs - r, cs - c, int(sad) + total_sad += sad + + if hlevel == 0: break + + # upsample frame data using Haar wavelet + ha = [pywt.waverec2(ha[:2], w)] + ha[2:] + href = [pywt.waverec2(href[:2], w)] + href[2:] + hbs *= 2 + hlevel -= 1 + + return total_sad, mvf + +def ft_mvf(a, b, mvf, imvf, bs=8): + ''' + Motion-compensated temporal decomposition between frame a and b + using Haar wavelet applying a given forward and inverse motion field. + ''' + + H = numpy.empty(a.shape, numpy.float) + L = numpy.empty(a.shape, numpy.float) + + i0 = numpy.indices((bs,bs))[0] + i1 = numpy.indices((bs,bs))[1] + + for r in xrange(0, a.shape[0], bs): + for c in xrange(0, a.shape[1], bs): + rm = mvf[r, c, 0] + r + cm = mvf[r, c, 1] + c + H[r:r+bs, c:c+bs] = numpy.asarray(a[r:r+bs,c:c+bs], numpy.float) - b[rm:rm+bs,cm:cm+bs] + rm = r + imvf[r:r+bs,c:c+bs,0] + i0 + cm = c + imvf[r:r+bs,c:c+bs,1] + i1 + _a = a[rm, cm] + L[r:r+bs, c:c+bs] = numpy.where( \ + imvf[r:r+bs, c:c+bs, 2] == UNCONNECTED, \ + numpy.asarray(b[r:r+bs, c:c+bs], numpy.float), \ + 0.5 * (numpy.asarray(b[r:r+bs, c:c+bs], numpy.float) + _a)) + + return L, H + +def it_mvf(L, H, mvf, imvf, bs=8): + ''' + Reconstruction of two frames a and b from temporal low- and high-pass subband + using Haar wavelet and applying the given forward and inverse motion field. + ''' + + i0 = numpy.indices((bs,bs))[0] + i1 = numpy.indices((bs,bs))[1] + + b = numpy.empty(L.shape, numpy.float) + for r in xrange(0, L.shape[0], bs): + for c in xrange(0, L.shape[1], bs): + _L = L[r:r+bs,c:c+bs] + rm = r + imvf[r:r+bs,c:c+bs,0] + i0 + cm = c + imvf[r:r+bs,c:c+bs,1] + i1 + _H = H[rm, cm] + b[r:r+bs,c:c+bs] = numpy.where( \ + imvf[r:r+bs,c:c+bs,2] == UNCONNECTED, \ + _L, \ + _L - 0.5 * _H) + + a = numpy.empty(L.shape, numpy.float) + for r in xrange(0, L.shape[0], bs): + for c in xrange(0, L.shape[1], bs): + rm = mvf[r, c, 0] + r + cm = mvf[r, c, 1] + c + _H = H[r:r+bs,c:c+bs] + a[r:r+bs, c:c+bs] = numpy.where( \ + mvf[r:r+bs,c:c+bs,2] == MULTIPLE_CONNECTED, \ + b[rm:rm+bs,cm:cm+bs] + _H, \ + L[rm:rm+bs,cm:cm+bs] + 0.5 * _H) + + return a, b + +def _show_mv_dist(mvf, idx=0, level=0, sr=8, fname='mv_dist'): + im = Image.new('RGB', (mvf.shape[1], mvf.shape[0])) + d = ImageDraw.Draw(im) + + for r in xrange(mvf.shape[0]): + for c in xrange(mvf.shape[1]): + mv = mvf[r][c] + + if sr > 0: w = int(math.sqrt(mv[0]**2 + mv[1]**2)*255/(sr*math.sqrt(2.0))) + else: w = 0 + + if mv[2] >= 0 or mv[2] == CONNECTED: color = (0, w, 0) + elif mv[2] == UNCONNECTED: color = (255, 0, 0) + elif mv[2] == MULTIPLE_CONNECTED: color = (0, 0, w) + + d.point((c, r), fill=color) + + del d + im.save('%s-%02d-%04d.png' % (fname, level, idx), 'PNG') + del im + +def show_mvf(mvf, imvf, idx=0, level=0, bs=8, sr=8): + ''' + Visualize the motion field as .png and output motion vectors to .txt. + ''' + + im = Image.new('RGB', (mvf.shape[1]*2, mvf.shape[0]*2)) + d = ImageDraw.Draw(im) + f = open('mv-%02d-%04d.txt' % (level, idx), 'wt') + sad = mvf[:,:,2].ravel() + sad_min = numpy.min(numpy.where(sad < 0.0, 0, sad)) + sad_max = numpy.max(sad) + for r in xrange(0,mvf.shape[0],bs): + for c in xrange(0,mvf.shape[1],bs): + mv = mvf[r][c] + print >>f, '(%d %d)' % (mv[1], mv[0]), + + # fill block according to SAD + if sad_max > 0 and mv[2] > 0: + d.rectangle([(c*2,r*2),(c*2+bs*2,r*2+bs*2)], fill=((mv[2]-sad_min)*255/sad_max,0,0)) + + # draw motion vector + if sr > 0: w = int(math.sqrt(mv[0]**2 + mv[1]**2)/(sr*math.sqrt(2.0))) + else: w = 0 + + d.line([ \ + (c*2+bs, r*2+bs), \ + (c*2+bs+mv[1]*2, r*2+bs+mv[0]*2)], \ + fill=(0,int(32+(255-32)*w),0)) + d.point((c*2+bs, r*2+bs), fill=(255,255,255)) + + print >>f + print >>f + + f.close() + del d + + im.save('mv-%02d-%04d.png' % (level, idx), 'PNG') + del im + + _show_mv_dist(mvf, idx, level, sr, 'mvf_dist') + _show_mv_dist(imvf, idx, level, sr, 'mvi_dist') + + +def inverse_mvf(mvf, bs=8): + ''' + Compute the inverse of the motion field. + ''' + + imvf = numpy.zeros((mvf.shape[0], mvf.shape[1], 3), numpy.int) + imvf[:,:,2] = UNCONNECTED + for r in xrange(0, mvf.shape[0], bs): + for c in xrange(0, mvf.shape[1], bs): + rm = mvf[r,c,0] + r + cm = mvf[r,c,1] + c + + blockmvf = mvf[r:r+bs,c:c+bs] + blockimvf = imvf[rm:rm+bs,cm:cm+bs] + + # mark multiple connected in forward motion field if pixel already connected + numpy.place(blockmvf[:,:,2], blockimvf[:,:,2] > UNCONNECTED, MULTIPLE_CONNECTED) + + # invert motion vector and store in inverse motion field, mark pixel as connected + unconnected = blockimvf[:,:,2] == UNCONNECTED + numpy.place(blockimvf[:,:,0], unconnected, -mvf[r,c,0]) + numpy.place(blockimvf[:,:,1], unconnected, -mvf[r,c,1]) + numpy.place(blockimvf[:,:,2], unconnected, CONNECTED) + + return mvf, imvf + +def decompose_sequence(seq, Hs=[], MVFs=[], bs=8, sr=8, hlevel=2, tlp=MIDDLE, visualize_mvf=False, dlevel=-1): + ''' + Recursively decompose frame sequence using motion-compensated temporal filtering + employing the parameters blocksize, searchrange and hierarchy level for motion estimation. + + Output is [L], [H0, H1, H1, H2, H2, H2, H2], [MVF0, MVF1, MVF1, MVF2, MVF2, MVF2, MVF2] for + a sequence of length 8. + + The tlp argument allows to move the temporal low-pass frame to the left, + middle or right. + ''' + Ls = [] + if dlevel < 0: dlevel = int(math.log(len(seq), 2)) + + if len(seq) == 1: + return seq, Hs, MVFs + + if tlp == RIGHT: left = 0; mid = len(seq); right = 0 + elif tlp == LEFT: left = 0; mid = 0; right = len(seq) + else: left = 0; mid = max(len(seq)/2, 2); right = len(seq) + + for i in xrange(left, mid, 2): + sad, mvf = motion_estimation(seq[i+1], seq[i], bs, sr, hlevel) + mvf, imvf = inverse_mvf(mvf, bs) + if visualize_mvf: + show_mvf(mvf, imvf, i, dlevel-1, bs, sr) + MVFs.insert(i//2, mvf) + L, H = ft_mvf(seq[i], seq[i+1], mvf, imvf, bs) + Ls.append(L) + Hs.insert(i//2, H) + + for i in xrange(mid, right, 2): + sad, mvf = motion_estimation(seq[i], seq[i+1], bs, sr, hlevel) + mvf, imvf = inverse_mvf(mvf, bs) + if visualize_mvf: + show_mvf(mvf, imvf, i, dlevel-1, bs, sr) + MVFs.insert(i//2, mvf) + L, H = ft_mvf(seq[i+1], seq[i], mvf, imvf, bs) + Ls.append(L) + Hs.insert(i//2, H) + + return decompose_sequence(Ls, Hs, MVFs, bs, sr, hlevel, tlp, visualize_mvf, dlevel-1) + +def reconstruct_sequence(seq, Hs, MVFs, bs=8, tlp=MIDDLE): + ''' + Recursively reconstruct a frame sequence from temporal low- and high-pass subbands + and motion fields. + ''' + + Ls = [] + + if len(Hs) == 0: + return seq + + if tlp == RIGHT: left = 0; mid = len(seq); right = 0 + elif tlp == LEFT: left = 0; mid = 0; right = len(seq) + else: left = 0; mid = max(len(seq)/2, 1); right = len(seq) + + for i in xrange(0, mid): + mvf = MVFs[0] + mvf, imvf = inverse_mvf(mvf, bs) + a, b = it_mvf(seq[i], Hs[0], mvf, imvf, bs) + Ls += [a] + [b] + del Hs[0] + del MVFs[0] + + for i in xrange(mid, right): + mvf = MVFs[0] + mvf, imvf = inverse_mvf(mvf, bs) + a, b = it_mvf(seq[i], Hs[0], mvf, imvf, bs) + Ls += [b] + [a] + del Hs[0] + del MVFs[0] + + return reconstruct_sequence(Ls, Hs, MVFs, bs, tlp) +