0
|
1 {
|
|
2 Name biortho nr. 1
|
|
3 Type biorthogonal
|
|
4 {
|
|
5 Type symm
|
|
6 Length 3
|
|
7 Start 0
|
|
8 End 2
|
|
9 0.353553
|
|
10 -0.707107
|
|
11 0.353553
|
|
12 }
|
|
13 {
|
|
14 Type symm
|
|
15 Length 5
|
|
16 Start -2
|
|
17 End 2
|
|
18 -0.176777
|
|
19 0.353553
|
|
20 1.060660
|
|
21 0.353553
|
|
22 -0.176777
|
|
23 }
|
|
24 {
|
|
25 Type symm
|
|
26 Length 5
|
|
27 Start -1
|
|
28 End 3
|
|
29 0.176777
|
|
30 0.353553
|
|
31 -1.060660
|
|
32 0.353553
|
|
33 0.176777
|
|
34 }
|
|
35 {
|
|
36 Type symm
|
|
37 Length 3
|
|
38 Start -1
|
|
39 End 1
|
|
40 0.353553
|
|
41 0.707107
|
|
42 0.353553
|
|
43 }
|
|
44 }
|
|
45
|
|
46 {
|
|
47 Name biortho nr. 2
|
|
48 Type biorthogonal
|
|
49 {
|
|
50 Type symm
|
|
51 Length 7
|
|
52 Start -4
|
|
53 End 2
|
|
54 -0.064539
|
|
55 0.040689
|
|
56 0.418092
|
|
57 -0.788486
|
|
58 0.418092
|
|
59 0.040689
|
|
60 -0.064539
|
|
61 }
|
|
62 {
|
|
63 Type symm
|
|
64 Length 9
|
|
65 Start -4
|
|
66 End 4
|
|
67 0.037828
|
|
68 -0.023849
|
|
69 -0.110624
|
|
70 0.377402
|
|
71 0.852699
|
|
72 0.377402
|
|
73 -0.110624
|
|
74 -0.023849
|
|
75 0.037828
|
|
76 }
|
|
77 {
|
|
78 Type symm
|
|
79 Length 9
|
|
80 Start -5
|
|
81 End 3
|
|
82 -0.037828
|
|
83 -0.023849
|
|
84 0.110624
|
|
85 0.377402
|
|
86 -0.852699
|
|
87 0.377402
|
|
88 0.110624
|
|
89 -0.023849
|
|
90 -0.037828
|
|
91 }
|
|
92 {
|
|
93 Type symm
|
|
94 Length 7
|
|
95 Start -3
|
|
96 End 3
|
|
97 -0.064539
|
|
98 -0.040689
|
|
99 0.418092
|
|
100 0.788486
|
|
101 0.418092
|
|
102 -0.040689
|
|
103 -0.064539
|
|
104 }
|
|
105 }
|
|
106 {
|
|
107 Name Daubechies 4
|
|
108 Type orthogonal
|
|
109 {
|
|
110 Type symm
|
|
111 Length 4
|
|
112 Start -1
|
|
113 End 2
|
|
114
|
|
115 -0.129409522551
|
|
116 -0.224143868042
|
|
117 0.836516303737
|
|
118 -0.482962913144
|
|
119
|
|
120 }
|
|
121 {
|
|
122 Type symm
|
|
123 Length 4
|
|
124 Start -1
|
|
125 End 2
|
|
126
|
|
127 0.482962913144
|
|
128 0.836516303737
|
|
129 0.224143868042
|
|
130 -0.129409522551
|
|
131
|
|
132 }
|
|
133 }
|
|
134
|
|
135 {
|
|
136 Name Daubechies 6
|
|
137 Type orthogonal
|
|
138 {
|
|
139 Type symm
|
|
140 Length 6
|
|
141 Start -3
|
|
142 End 2
|
|
143
|
|
144 0.035226291882
|
|
145 0.085441273882
|
|
146 -0.135011020010
|
|
147 -0.459877502118
|
|
148 0.806891509311
|
|
149 -0.332670552950
|
|
150
|
|
151
|
|
152 }
|
|
153 {
|
|
154 Type symm
|
|
155 Length 6
|
|
156 Start -1
|
|
157 End 4
|
|
158
|
|
159 0.332670552950
|
|
160 0.806891509311
|
|
161 0.459877502118
|
|
162 -0.135011020010
|
|
163 -0.085441273882
|
|
164 0.035226291882
|
|
165
|
|
166 }
|
|
167 }
|
|
168 {
|
|
169 Name Daubechies 8
|
|
170 Type orthogonal
|
|
171 {
|
|
172 Type symm
|
|
173 Length 8
|
|
174 Start -1
|
|
175 End 6
|
|
176
|
|
177
|
|
178 -0.010597401785
|
|
179 -0.032883011667
|
|
180 0.030841381836
|
|
181 0.187034811719
|
|
182 -0.027983769417
|
|
183 -0.630880766793
|
|
184 0.714846570553
|
|
185 -0.230377813309
|
|
186
|
|
187 }
|
|
188 {
|
|
189 Type symm
|
|
190 Length 8
|
|
191 Start -1
|
|
192 End 6
|
|
193
|
|
194 0.230377813309
|
|
195 0.714846570553
|
|
196 0.630880766793
|
|
197 -0.027983769417
|
|
198 -0.187034811719
|
|
199 0.030841381836
|
|
200 0.032883011667
|
|
201 -0.010597401785
|
|
202
|
|
203 }
|
|
204 }
|
|
205 {
|
|
206 Name Daubechies 10
|
|
207 Type orthogonal
|
|
208 {
|
|
209 Type symm
|
|
210 Length 10
|
|
211 Start -2
|
|
212 End 7
|
|
213
|
|
214 0.0033357252854738
|
|
215 0.0125807519990820
|
|
216 -0.0062414902127983
|
|
217 -0.0775714938400459
|
|
218 -0.0322448695846381
|
|
219 0.2422948870663823
|
|
220 0.1384281459013203
|
|
221 -0.7243085284377726
|
|
222 0.6038292697971895
|
|
223 -0.1601023979741929
|
|
224
|
|
225 }
|
|
226 {
|
|
227 Type symm
|
|
228 Length 10
|
|
229 Start -2
|
|
230 End 7
|
|
231
|
|
232 0.1601023979741929
|
|
233 0.6038292697971895
|
|
234 0.7243085284377726
|
|
235 0.1384281459013203
|
|
236 -0.2422948870663823
|
|
237 -0.0322448695846381
|
|
238 0.0775714938400459
|
|
239 -0.0062414902127983
|
|
240 -0.0125807519990820
|
|
241 0.0033357252854738
|
|
242
|
|
243 }
|
|
244 }
|
|
245
|
|
246 {
|
|
247 Name Daubechies 12
|
|
248 Type orthogonal
|
|
249 {
|
|
250 Type symm
|
|
251 Length 12
|
|
252 Start -1
|
|
253 End 10
|
|
254
|
|
255 -0.0010773010853085
|
|
256 -0.0047772575119455
|
|
257 0.0005538422011614
|
|
258 0.0315820393184862
|
|
259 0.0275228655303053
|
|
260 -0.0975016055873225
|
|
261 -0.1297668675672625
|
|
262 0.2262646939654400
|
|
263 0.3152503517091982
|
|
264 -0.7511339080210959
|
|
265 0.4946238903984533
|
|
266 -0.1115407433501095
|
|
267
|
|
268 }
|
|
269 {
|
|
270 Type symm
|
|
271 Length 12
|
|
272 Start -1
|
|
273 End 10
|
|
274
|
|
275 0.1115407433501095
|
|
276 0.4946238903984533
|
|
277 0.7511339080210959
|
|
278 0.3152503517091982
|
|
279 -0.2262646939654400
|
|
280 -0.1297668675672625
|
|
281 0.0975016055873225
|
|
282 0.0275228655303053
|
|
283 -0.0315820393184862
|
|
284 0.0005538422011614
|
|
285 0.0047772575119455
|
|
286 -0.0010773010853085
|
|
287
|
|
288 }
|
|
289 }
|
|
290
|
|
291 {
|
|
292 Name Daubechies 14
|
|
293 Type orthogonal
|
|
294 {
|
|
295 Type symm
|
|
296 Length 14
|
|
297 Start -1
|
|
298 End 12
|
|
299
|
|
300 0.0003537138
|
|
301 0.001801640704
|
|
302 0.000429577973
|
|
303 -0.012550998556
|
|
304 -0.016574541631
|
|
305 0.038029936935
|
|
306 0.0806112609151
|
|
307 -0.071309219267
|
|
308 -0.224036184994
|
|
309 0.143906003929
|
|
310 0.469782287405
|
|
311 -0.729132090846
|
|
312 0.396539319482
|
|
313 -0.077852054085
|
|
314
|
|
315 }
|
|
316 {
|
|
317 Type symm
|
|
318 Length 14
|
|
319 Start -1
|
|
320 End 12
|
|
321
|
|
322 0.077852054085
|
|
323 0.396539319482
|
|
324 0.729132090846
|
|
325 0.469782287405
|
|
326 -0.143906003929
|
|
327 -0.224036184994
|
|
328 0.071309219267
|
|
329 0.0806112609151
|
|
330 -0.038029936935
|
|
331 -0.016574541631
|
|
332 0.012550998556
|
|
333 0.000429577973
|
|
334 -0.001801640704
|
|
335 0.0003537138
|
|
336
|
|
337 }
|
|
338 }
|
|
339
|
|
340
|
|
341 {
|
|
342 Name Daubechies 20
|
|
343 Type orthogonal
|
|
344 {
|
|
345 Type symm
|
|
346 Length 20
|
|
347 Start -1
|
|
348 End 18
|
|
349
|
|
350 -0.000013264203
|
|
351 -0.000093588670
|
|
352 -0.000116466855
|
|
353 0.000685856695
|
|
354 0.001992405295
|
|
355 0.001395351747
|
|
356 -0.010733175483
|
|
357 -0.003606553567
|
|
358 0.033212674059
|
|
359 0.029457536822
|
|
360 -0.071394147166
|
|
361 -0.093057364604
|
|
362 0.127369340336
|
|
363 0.195946274377
|
|
364 -0.249846424327
|
|
365 -0.281172343661
|
|
366 0.688459039454
|
|
367 -0.527201188932
|
|
368 0.188176800078
|
|
369 -0.026670057901
|
|
370
|
|
371 }
|
|
372 {
|
|
373 Type symm
|
|
374 Length 20
|
|
375 Start -1
|
|
376 End 18
|
|
377
|
|
378 0.026670057901
|
|
379 0.188176800078
|
|
380 0.527201188932
|
|
381 0.688459039454
|
|
382 0.281172343661
|
|
383 -0.249846424327
|
|
384 -0.195946274377
|
|
385 0.127369340336
|
|
386 0.093057364604
|
|
387 -0.071394147166
|
|
388 -0.029457536822
|
|
389 0.033212674059
|
|
390 0.003606553567
|
|
391 -0.010733175483
|
|
392 0.001395351747
|
|
393 0.001992405295
|
|
394 -0.000685856695
|
|
395 -0.000116466855
|
|
396 0.000093588670
|
|
397 -0.000013264203
|
|
398 }
|
|
399 }
|
|
400
|
|
401
|
|
402 {
|
|
403 Name Beylkin 18
|
|
404 Type orthogonal
|
|
405 {
|
|
406 Type symm
|
|
407 Length 18
|
|
408 Start -1
|
|
409 End 16
|
|
410
|
|
411 0.00064048532852124535
|
|
412 0.0027360316262586061
|
|
413 0.0014842347824723461
|
|
414 -0.01004041184463199
|
|
415 -0.014365807968852611
|
|
416 0.017460408696028829
|
|
417 0.042916387274192273
|
|
418 -0.01967986604432212
|
|
419 -0.088543630622924835
|
|
420 0.017520746266529649
|
|
421 0.1555387318770938
|
|
422 -0.02690030880369032
|
|
423 -0.26449723144638482
|
|
424 0.1109275983482343
|
|
425 0.44971825114946867
|
|
426 -0.69982521405660059
|
|
427 0.42421536081296141
|
|
428 -0.099305765374353927
|
|
429
|
|
430 }
|
|
431 {
|
|
432 Type symm
|
|
433 Length 18
|
|
434 Start -1
|
|
435 End 16
|
|
436
|
|
437 0.099305765374353927
|
|
438 0.42421536081296141
|
|
439 0.69982521405660059
|
|
440 0.44971825114946867
|
|
441 -0.1109275983482343
|
|
442 -0.26449723144638482
|
|
443 0.02690030880369032
|
|
444 0.1555387318770938
|
|
445 -0.017520746266529649
|
|
446 -0.088543630622924835
|
|
447 0.01967986604432212
|
|
448 0.042916387274192273
|
|
449 -0.017460408696028829
|
|
450 -0.014365807968852611
|
|
451 0.01004041184463199
|
|
452 0.0014842347824723461
|
|
453 -0.0027360316262586061
|
|
454 0.00064048532852124535
|
|
455
|
|
456 }
|
|
457 }
|
|
458
|
|
459
|
|
460 {
|
|
461 Name Vaidyanathan 24
|
|
462 Type orthogonal
|
|
463 {
|
|
464 Type symm
|
|
465 Length 24
|
|
466 Start -1
|
|
467 End 22
|
|
468
|
|
469 0.045799334110976718
|
|
470 -0.25018412950466218
|
|
471 0.57279779321073432
|
|
472 -0.63560105987221494
|
|
473 0.20161216177530866
|
|
474 0.26349480248845991
|
|
475 -0.19445047176647817
|
|
476 -0.13508422712948126
|
|
477 0.13197166141697772
|
|
478 0.08392888436611283
|
|
479 -0.07770975090196941
|
|
480 -0.055892523691373548
|
|
481 0.03874261929341144
|
|
482 0.035470398607283453
|
|
483 -0.014853448005230099
|
|
484 -0.019687215010072714
|
|
485 0.003153847055897004
|
|
486 0.008839103408613878
|
|
487 0.00070813750405244471
|
|
488 -0.0028438345468355646
|
|
489 -0.00094489713632194927
|
|
490 0.00045395661963721929
|
|
491 0.00034363190482102919
|
|
492 0.000062906118190737523
|
|
493
|
|
494 }
|
|
495 {
|
|
496 Type symm
|
|
497 Length 24
|
|
498 Start -1
|
|
499 End 22
|
|
500
|
|
501 -0.000062906118190737523
|
|
502 0.00034363190482102919
|
|
503 -0.00045395661963721929
|
|
504 -0.00094489713632194927
|
|
505 0.0028438345468355646
|
|
506 0.00070813750405244471
|
|
507 -0.008839103408613878
|
|
508 0.003153847055897004
|
|
509 0.019687215010072714
|
|
510 -0.014853448005230099
|
|
511 -0.035470398607283453
|
|
512 0.03874261929341144
|
|
513 0.055892523691373548
|
|
514 -0.07770975090196941
|
|
515 -0.08392888436611283
|
|
516 0.13197166141697772
|
|
517 0.13508422712948126
|
|
518 -0.19445047176647817
|
|
519 -0.26349480248845991
|
|
520 0.20161216177530866
|
|
521 0.63560105987221494
|
|
522 0.57279779321073432
|
|
523 0.25018412950466218
|
|
524 0.045799334110976718
|
|
525 }
|
|
526 }
|
|
527
|
|
528
|
|
529 {
|
|
530 Name Coifman 6
|
|
531 Type orthogonal
|
|
532 {
|
|
533 Type symm
|
|
534 Length 6
|
|
535 Start -1
|
|
536 End 4
|
|
537
|
|
538 0.226584276197068560
|
|
539 -0.745687558934434280
|
|
540 0.607391641385684120
|
|
541 0.077161555495773498
|
|
542 -0.12696912539620520
|
|
543 0.038580777747886749
|
|
544
|
|
545 }
|
|
546 {
|
|
547 Type symm
|
|
548 Length 6
|
|
549 Start -1
|
|
550 End 4
|
|
551
|
|
552 0.038580777747886749
|
|
553 -0.12696912539620520
|
|
554 -0.077161555495773498
|
|
555 0.607391641385684120
|
|
556 0.745687558934434280
|
|
557 0.226584276197068560
|
|
558 }
|
|
559 }
|
|
560
|
|
561
|
|
562 {
|
|
563 Name Coifman 12
|
|
564 Type orthogonal
|
|
565 {
|
|
566 Type symm
|
|
567 Length 12
|
|
568 Start -1
|
|
569 End 10
|
|
570
|
|
571 -0.000720549445369115120
|
|
572 0.00182320887091009920
|
|
573 0.00561143481936598850
|
|
574 -0.0236801719468767500
|
|
575 -0.0594344186464712400
|
|
576 0.0764885990782645940
|
|
577 0.417005184423777600
|
|
578 -0.812723635449606130
|
|
579 0.386110066823092900
|
|
580 0.0673725547222998740
|
|
581 -0.0414649367819664850
|
|
582 -0.0163873364631797850
|
|
583
|
|
584 }
|
|
585 {
|
|
586 Type symm
|
|
587 Length 12
|
|
588 Start -1
|
|
589 End 10
|
|
590
|
|
591 0.0163873364631797850
|
|
592 -0.0414649367819664850
|
|
593 -0.0673725547222998740
|
|
594 0.386110066823092900
|
|
595 0.812723635449606130
|
|
596 0.417005184423777600
|
|
597 -0.0764885990782645940
|
|
598 -0.0594344186464712400
|
|
599 0.0236801719468767500
|
|
600 0.00561143481936598850
|
|
601 -0.00182320887091009920
|
|
602 -0.000720549445369115120
|
|
603
|
|
604 }
|
|
605 }
|
|
606
|
|
607
|
|
608 {
|
|
609 Name Coifman 18
|
|
610 Type orthogonal
|
|
611 {
|
|
612 Type symm
|
|
613 Length 18
|
|
614 Start -1
|
|
615 End 16
|
|
616
|
|
617 -0.000034599773197402695
|
|
618 0.000070983302505704928
|
|
619 0.00046621695982014403
|
|
620 -0.00111751877082696180
|
|
621 -0.0025745176881279692
|
|
622 0.0090079761367322896
|
|
623 0.0158805448636159010
|
|
624 -0.0345550275733444640
|
|
625 -0.082301927106320283
|
|
626 0.071799821619170590
|
|
627 0.428483476377618690
|
|
628 -0.793777222625620340
|
|
629 0.405176902409616790
|
|
630 0.0611233900029556980
|
|
631 -0.0657719112814312280
|
|
632 -0.0234526961421191030
|
|
633 0.00778259642567178690
|
|
634 0.00379351286437787590
|
|
635
|
|
636 }
|
|
637 {
|
|
638 Type symm
|
|
639 Length 18
|
|
640 Start -1
|
|
641 End 16
|
|
642
|
|
643 -0.00379351286437787590
|
|
644 0.00778259642567178690
|
|
645 0.0234526961421191030
|
|
646 -0.0657719112814312280
|
|
647 -0.0611233900029556980
|
|
648 0.405176902409616790
|
|
649 0.793777222625620340
|
|
650 0.428483476377618690
|
|
651 -0.071799821619170590
|
|
652 -0.082301927106320283
|
|
653 0.0345550275733444640
|
|
654 0.0158805448636159010
|
|
655 -0.0090079761367322896
|
|
656 -0.0025745176881279692
|
|
657 0.00111751877082696180
|
|
658 0.00046621695982014403
|
|
659 -0.000070983302505704928
|
|
660 -0.000034599773197402695
|
|
661
|
|
662 }
|
|
663 }
|
|
664
|
|
665 {
|
|
666 Name Biorthogonal 1,3
|
|
667 Type biorthogonal
|
|
668 {
|
|
669 Type symm
|
|
670 Length 6
|
|
671 Start -1
|
|
672 End 4
|
|
673
|
|
674 -0.08838834764832
|
|
675 -0.08838834764832
|
|
676 0.707106781
|
|
677 -0.707106781
|
|
678 0.08838834764832
|
|
679 0.08838834764832
|
|
680
|
|
681 }
|
|
682 {
|
|
683 Type symm
|
|
684 Length 2
|
|
685 Start 1
|
|
686 End 2
|
|
687 0.707106781
|
|
688 0.707106781
|
|
689
|
|
690 }
|
|
691
|
|
692 {
|
|
693 Type symm
|
|
694 Length 2
|
|
695 Start 1
|
|
696 End 2
|
|
697 0.707106781
|
|
698 -0.707106781
|
|
699 }
|
|
700 {
|
|
701 Type symm
|
|
702 Length 6
|
|
703 Start -1
|
|
704 End 4
|
|
705
|
|
706 -0.08838834764832
|
|
707 0.08838834764832
|
|
708 0.707106781
|
|
709 0.707106781
|
|
710 0.08838834764832
|
|
711 -0.08838834764832
|
|
712
|
|
713 }
|
|
714 }
|
|
715
|
|
716 {
|
|
717 Name Biorthogonal 1,5
|
|
718 Type biorthogonal
|
|
719 {
|
|
720 Type symm
|
|
721 Length 10
|
|
722 Start -1
|
|
723 End 8
|
|
724
|
|
725 0.01657281518406
|
|
726 0.01657281518406
|
|
727 -0.1215339780164
|
|
728 -0.1215339780164
|
|
729 0.707106781
|
|
730 -0.707106781
|
|
731 0.1215339780164
|
|
732 0.1215339780164
|
|
733 -0.01657281518406
|
|
734 -0.01657281518406
|
|
735
|
|
736 }
|
|
737 {
|
|
738 Type symm
|
|
739 Length 2
|
|
740 Start 3
|
|
741 End 4
|
|
742
|
|
743 0.707106781
|
|
744 0.707106781
|
|
745 }
|
|
746
|
|
747 {
|
|
748 Type symm
|
|
749 Length 2
|
|
750 Start 3
|
|
751 End 4
|
|
752
|
|
753 0.707106781
|
|
754 -0.707106781
|
|
755 }
|
|
756 {
|
|
757 Type symm
|
|
758 Length 10
|
|
759 Start -1
|
|
760 End 8
|
|
761
|
|
762 0.01657281518406
|
|
763 -0.01657281518406
|
|
764 -0.1215339780164
|
|
765 0.1215339780164
|
|
766 0.707106781
|
|
767 0.707106781
|
|
768 0.1215339780164
|
|
769 -0.1215339780164
|
|
770 -0.01657281518406
|
|
771 0.01657281518406
|
|
772
|
|
773 }
|
|
774 }
|