Mercurial > hg > wm
comparison Meerwald-dir/filter.dat @ 24:9f20bce6184e v0.7
move directories, support netpbm 11
author | Peter Meerwald-Stadler <pmeerw@pmeerw.net> |
---|---|
date | Fri, 20 Dec 2024 13:08:59 +0100 |
parents | Meerwald/filter.dat@be303a3f5ea8 |
children |
comparison
equal
deleted
inserted
replaced
23:71dd4b96221b | 24:9f20bce6184e |
---|---|
1 { | |
2 Name biortho nr. 1 | |
3 Type biorthogonal | |
4 { | |
5 Type symm | |
6 Length 3 | |
7 Start 0 | |
8 End 2 | |
9 0.353553 | |
10 -0.707107 | |
11 0.353553 | |
12 } | |
13 { | |
14 Type symm | |
15 Length 5 | |
16 Start -2 | |
17 End 2 | |
18 -0.176777 | |
19 0.353553 | |
20 1.060660 | |
21 0.353553 | |
22 -0.176777 | |
23 } | |
24 { | |
25 Type symm | |
26 Length 5 | |
27 Start -1 | |
28 End 3 | |
29 0.176777 | |
30 0.353553 | |
31 -1.060660 | |
32 0.353553 | |
33 0.176777 | |
34 } | |
35 { | |
36 Type symm | |
37 Length 3 | |
38 Start -1 | |
39 End 1 | |
40 0.353553 | |
41 0.707107 | |
42 0.353553 | |
43 } | |
44 } | |
45 | |
46 { | |
47 Name biortho nr. 2 | |
48 Type biorthogonal | |
49 { | |
50 Type symm | |
51 Length 7 | |
52 Start -4 | |
53 End 2 | |
54 -0.064539 | |
55 0.040689 | |
56 0.418092 | |
57 -0.788486 | |
58 0.418092 | |
59 0.040689 | |
60 -0.064539 | |
61 } | |
62 { | |
63 Type symm | |
64 Length 9 | |
65 Start -4 | |
66 End 4 | |
67 0.037828 | |
68 -0.023849 | |
69 -0.110624 | |
70 0.377402 | |
71 0.852699 | |
72 0.377402 | |
73 -0.110624 | |
74 -0.023849 | |
75 0.037828 | |
76 } | |
77 { | |
78 Type symm | |
79 Length 9 | |
80 Start -5 | |
81 End 3 | |
82 -0.037828 | |
83 -0.023849 | |
84 0.110624 | |
85 0.377402 | |
86 -0.852699 | |
87 0.377402 | |
88 0.110624 | |
89 -0.023849 | |
90 -0.037828 | |
91 } | |
92 { | |
93 Type symm | |
94 Length 7 | |
95 Start -3 | |
96 End 3 | |
97 -0.064539 | |
98 -0.040689 | |
99 0.418092 | |
100 0.788486 | |
101 0.418092 | |
102 -0.040689 | |
103 -0.064539 | |
104 } | |
105 } | |
106 { | |
107 Name Daubechies 4 | |
108 Type orthogonal | |
109 { | |
110 Type symm | |
111 Length 4 | |
112 Start -1 | |
113 End 2 | |
114 | |
115 -0.129409522551 | |
116 -0.224143868042 | |
117 0.836516303737 | |
118 -0.482962913144 | |
119 | |
120 } | |
121 { | |
122 Type symm | |
123 Length 4 | |
124 Start -1 | |
125 End 2 | |
126 | |
127 0.482962913144 | |
128 0.836516303737 | |
129 0.224143868042 | |
130 -0.129409522551 | |
131 | |
132 } | |
133 } | |
134 | |
135 { | |
136 Name Daubechies 6 | |
137 Type orthogonal | |
138 { | |
139 Type symm | |
140 Length 6 | |
141 Start -3 | |
142 End 2 | |
143 | |
144 0.035226291882 | |
145 0.085441273882 | |
146 -0.135011020010 | |
147 -0.459877502118 | |
148 0.806891509311 | |
149 -0.332670552950 | |
150 | |
151 | |
152 } | |
153 { | |
154 Type symm | |
155 Length 6 | |
156 Start -1 | |
157 End 4 | |
158 | |
159 0.332670552950 | |
160 0.806891509311 | |
161 0.459877502118 | |
162 -0.135011020010 | |
163 -0.085441273882 | |
164 0.035226291882 | |
165 | |
166 } | |
167 } | |
168 { | |
169 Name Daubechies 8 | |
170 Type orthogonal | |
171 { | |
172 Type symm | |
173 Length 8 | |
174 Start -1 | |
175 End 6 | |
176 | |
177 | |
178 -0.010597401785 | |
179 -0.032883011667 | |
180 0.030841381836 | |
181 0.187034811719 | |
182 -0.027983769417 | |
183 -0.630880766793 | |
184 0.714846570553 | |
185 -0.230377813309 | |
186 | |
187 } | |
188 { | |
189 Type symm | |
190 Length 8 | |
191 Start -1 | |
192 End 6 | |
193 | |
194 0.230377813309 | |
195 0.714846570553 | |
196 0.630880766793 | |
197 -0.027983769417 | |
198 -0.187034811719 | |
199 0.030841381836 | |
200 0.032883011667 | |
201 -0.010597401785 | |
202 | |
203 } | |
204 } | |
205 { | |
206 Name Daubechies 10 | |
207 Type orthogonal | |
208 { | |
209 Type symm | |
210 Length 10 | |
211 Start -2 | |
212 End 7 | |
213 | |
214 0.0033357252854738 | |
215 0.0125807519990820 | |
216 -0.0062414902127983 | |
217 -0.0775714938400459 | |
218 -0.0322448695846381 | |
219 0.2422948870663823 | |
220 0.1384281459013203 | |
221 -0.7243085284377726 | |
222 0.6038292697971895 | |
223 -0.1601023979741929 | |
224 | |
225 } | |
226 { | |
227 Type symm | |
228 Length 10 | |
229 Start -2 | |
230 End 7 | |
231 | |
232 0.1601023979741929 | |
233 0.6038292697971895 | |
234 0.7243085284377726 | |
235 0.1384281459013203 | |
236 -0.2422948870663823 | |
237 -0.0322448695846381 | |
238 0.0775714938400459 | |
239 -0.0062414902127983 | |
240 -0.0125807519990820 | |
241 0.0033357252854738 | |
242 | |
243 } | |
244 } | |
245 | |
246 { | |
247 Name Daubechies 12 | |
248 Type orthogonal | |
249 { | |
250 Type symm | |
251 Length 12 | |
252 Start -1 | |
253 End 10 | |
254 | |
255 -0.0010773010853085 | |
256 -0.0047772575119455 | |
257 0.0005538422011614 | |
258 0.0315820393184862 | |
259 0.0275228655303053 | |
260 -0.0975016055873225 | |
261 -0.1297668675672625 | |
262 0.2262646939654400 | |
263 0.3152503517091982 | |
264 -0.7511339080210959 | |
265 0.4946238903984533 | |
266 -0.1115407433501095 | |
267 | |
268 } | |
269 { | |
270 Type symm | |
271 Length 12 | |
272 Start -1 | |
273 End 10 | |
274 | |
275 0.1115407433501095 | |
276 0.4946238903984533 | |
277 0.7511339080210959 | |
278 0.3152503517091982 | |
279 -0.2262646939654400 | |
280 -0.1297668675672625 | |
281 0.0975016055873225 | |
282 0.0275228655303053 | |
283 -0.0315820393184862 | |
284 0.0005538422011614 | |
285 0.0047772575119455 | |
286 -0.0010773010853085 | |
287 | |
288 } | |
289 } | |
290 | |
291 { | |
292 Name Daubechies 14 | |
293 Type orthogonal | |
294 { | |
295 Type symm | |
296 Length 14 | |
297 Start -1 | |
298 End 12 | |
299 | |
300 0.0003537138 | |
301 0.001801640704 | |
302 0.000429577973 | |
303 -0.012550998556 | |
304 -0.016574541631 | |
305 0.038029936935 | |
306 0.0806112609151 | |
307 -0.071309219267 | |
308 -0.224036184994 | |
309 0.143906003929 | |
310 0.469782287405 | |
311 -0.729132090846 | |
312 0.396539319482 | |
313 -0.077852054085 | |
314 | |
315 } | |
316 { | |
317 Type symm | |
318 Length 14 | |
319 Start -1 | |
320 End 12 | |
321 | |
322 0.077852054085 | |
323 0.396539319482 | |
324 0.729132090846 | |
325 0.469782287405 | |
326 -0.143906003929 | |
327 -0.224036184994 | |
328 0.071309219267 | |
329 0.0806112609151 | |
330 -0.038029936935 | |
331 -0.016574541631 | |
332 0.012550998556 | |
333 0.000429577973 | |
334 -0.001801640704 | |
335 0.0003537138 | |
336 | |
337 } | |
338 } | |
339 | |
340 | |
341 { | |
342 Name Daubechies 20 | |
343 Type orthogonal | |
344 { | |
345 Type symm | |
346 Length 20 | |
347 Start -1 | |
348 End 18 | |
349 | |
350 -0.000013264203 | |
351 -0.000093588670 | |
352 -0.000116466855 | |
353 0.000685856695 | |
354 0.001992405295 | |
355 0.001395351747 | |
356 -0.010733175483 | |
357 -0.003606553567 | |
358 0.033212674059 | |
359 0.029457536822 | |
360 -0.071394147166 | |
361 -0.093057364604 | |
362 0.127369340336 | |
363 0.195946274377 | |
364 -0.249846424327 | |
365 -0.281172343661 | |
366 0.688459039454 | |
367 -0.527201188932 | |
368 0.188176800078 | |
369 -0.026670057901 | |
370 | |
371 } | |
372 { | |
373 Type symm | |
374 Length 20 | |
375 Start -1 | |
376 End 18 | |
377 | |
378 0.026670057901 | |
379 0.188176800078 | |
380 0.527201188932 | |
381 0.688459039454 | |
382 0.281172343661 | |
383 -0.249846424327 | |
384 -0.195946274377 | |
385 0.127369340336 | |
386 0.093057364604 | |
387 -0.071394147166 | |
388 -0.029457536822 | |
389 0.033212674059 | |
390 0.003606553567 | |
391 -0.010733175483 | |
392 0.001395351747 | |
393 0.001992405295 | |
394 -0.000685856695 | |
395 -0.000116466855 | |
396 0.000093588670 | |
397 -0.000013264203 | |
398 } | |
399 } | |
400 | |
401 | |
402 { | |
403 Name Beylkin 18 | |
404 Type orthogonal | |
405 { | |
406 Type symm | |
407 Length 18 | |
408 Start -1 | |
409 End 16 | |
410 | |
411 0.00064048532852124535 | |
412 0.0027360316262586061 | |
413 0.0014842347824723461 | |
414 -0.01004041184463199 | |
415 -0.014365807968852611 | |
416 0.017460408696028829 | |
417 0.042916387274192273 | |
418 -0.01967986604432212 | |
419 -0.088543630622924835 | |
420 0.017520746266529649 | |
421 0.1555387318770938 | |
422 -0.02690030880369032 | |
423 -0.26449723144638482 | |
424 0.1109275983482343 | |
425 0.44971825114946867 | |
426 -0.69982521405660059 | |
427 0.42421536081296141 | |
428 -0.099305765374353927 | |
429 | |
430 } | |
431 { | |
432 Type symm | |
433 Length 18 | |
434 Start -1 | |
435 End 16 | |
436 | |
437 0.099305765374353927 | |
438 0.42421536081296141 | |
439 0.69982521405660059 | |
440 0.44971825114946867 | |
441 -0.1109275983482343 | |
442 -0.26449723144638482 | |
443 0.02690030880369032 | |
444 0.1555387318770938 | |
445 -0.017520746266529649 | |
446 -0.088543630622924835 | |
447 0.01967986604432212 | |
448 0.042916387274192273 | |
449 -0.017460408696028829 | |
450 -0.014365807968852611 | |
451 0.01004041184463199 | |
452 0.0014842347824723461 | |
453 -0.0027360316262586061 | |
454 0.00064048532852124535 | |
455 | |
456 } | |
457 } | |
458 | |
459 | |
460 { | |
461 Name Vaidyanathan 24 | |
462 Type orthogonal | |
463 { | |
464 Type symm | |
465 Length 24 | |
466 Start -1 | |
467 End 22 | |
468 | |
469 0.045799334110976718 | |
470 -0.25018412950466218 | |
471 0.57279779321073432 | |
472 -0.63560105987221494 | |
473 0.20161216177530866 | |
474 0.26349480248845991 | |
475 -0.19445047176647817 | |
476 -0.13508422712948126 | |
477 0.13197166141697772 | |
478 0.08392888436611283 | |
479 -0.07770975090196941 | |
480 -0.055892523691373548 | |
481 0.03874261929341144 | |
482 0.035470398607283453 | |
483 -0.014853448005230099 | |
484 -0.019687215010072714 | |
485 0.003153847055897004 | |
486 0.008839103408613878 | |
487 0.00070813750405244471 | |
488 -0.0028438345468355646 | |
489 -0.00094489713632194927 | |
490 0.00045395661963721929 | |
491 0.00034363190482102919 | |
492 0.000062906118190737523 | |
493 | |
494 } | |
495 { | |
496 Type symm | |
497 Length 24 | |
498 Start -1 | |
499 End 22 | |
500 | |
501 -0.000062906118190737523 | |
502 0.00034363190482102919 | |
503 -0.00045395661963721929 | |
504 -0.00094489713632194927 | |
505 0.0028438345468355646 | |
506 0.00070813750405244471 | |
507 -0.008839103408613878 | |
508 0.003153847055897004 | |
509 0.019687215010072714 | |
510 -0.014853448005230099 | |
511 -0.035470398607283453 | |
512 0.03874261929341144 | |
513 0.055892523691373548 | |
514 -0.07770975090196941 | |
515 -0.08392888436611283 | |
516 0.13197166141697772 | |
517 0.13508422712948126 | |
518 -0.19445047176647817 | |
519 -0.26349480248845991 | |
520 0.20161216177530866 | |
521 0.63560105987221494 | |
522 0.57279779321073432 | |
523 0.25018412950466218 | |
524 0.045799334110976718 | |
525 } | |
526 } | |
527 | |
528 | |
529 { | |
530 Name Coifman 6 | |
531 Type orthogonal | |
532 { | |
533 Type symm | |
534 Length 6 | |
535 Start -1 | |
536 End 4 | |
537 | |
538 0.226584276197068560 | |
539 -0.745687558934434280 | |
540 0.607391641385684120 | |
541 0.077161555495773498 | |
542 -0.12696912539620520 | |
543 0.038580777747886749 | |
544 | |
545 } | |
546 { | |
547 Type symm | |
548 Length 6 | |
549 Start -1 | |
550 End 4 | |
551 | |
552 0.038580777747886749 | |
553 -0.12696912539620520 | |
554 -0.077161555495773498 | |
555 0.607391641385684120 | |
556 0.745687558934434280 | |
557 0.226584276197068560 | |
558 } | |
559 } | |
560 | |
561 | |
562 { | |
563 Name Coifman 12 | |
564 Type orthogonal | |
565 { | |
566 Type symm | |
567 Length 12 | |
568 Start -1 | |
569 End 10 | |
570 | |
571 -0.000720549445369115120 | |
572 0.00182320887091009920 | |
573 0.00561143481936598850 | |
574 -0.0236801719468767500 | |
575 -0.0594344186464712400 | |
576 0.0764885990782645940 | |
577 0.417005184423777600 | |
578 -0.812723635449606130 | |
579 0.386110066823092900 | |
580 0.0673725547222998740 | |
581 -0.0414649367819664850 | |
582 -0.0163873364631797850 | |
583 | |
584 } | |
585 { | |
586 Type symm | |
587 Length 12 | |
588 Start -1 | |
589 End 10 | |
590 | |
591 0.0163873364631797850 | |
592 -0.0414649367819664850 | |
593 -0.0673725547222998740 | |
594 0.386110066823092900 | |
595 0.812723635449606130 | |
596 0.417005184423777600 | |
597 -0.0764885990782645940 | |
598 -0.0594344186464712400 | |
599 0.0236801719468767500 | |
600 0.00561143481936598850 | |
601 -0.00182320887091009920 | |
602 -0.000720549445369115120 | |
603 | |
604 } | |
605 } | |
606 | |
607 | |
608 { | |
609 Name Coifman 18 | |
610 Type orthogonal | |
611 { | |
612 Type symm | |
613 Length 18 | |
614 Start -1 | |
615 End 16 | |
616 | |
617 -0.000034599773197402695 | |
618 0.000070983302505704928 | |
619 0.00046621695982014403 | |
620 -0.00111751877082696180 | |
621 -0.0025745176881279692 | |
622 0.0090079761367322896 | |
623 0.0158805448636159010 | |
624 -0.0345550275733444640 | |
625 -0.082301927106320283 | |
626 0.071799821619170590 | |
627 0.428483476377618690 | |
628 -0.793777222625620340 | |
629 0.405176902409616790 | |
630 0.0611233900029556980 | |
631 -0.0657719112814312280 | |
632 -0.0234526961421191030 | |
633 0.00778259642567178690 | |
634 0.00379351286437787590 | |
635 | |
636 } | |
637 { | |
638 Type symm | |
639 Length 18 | |
640 Start -1 | |
641 End 16 | |
642 | |
643 -0.00379351286437787590 | |
644 0.00778259642567178690 | |
645 0.0234526961421191030 | |
646 -0.0657719112814312280 | |
647 -0.0611233900029556980 | |
648 0.405176902409616790 | |
649 0.793777222625620340 | |
650 0.428483476377618690 | |
651 -0.071799821619170590 | |
652 -0.082301927106320283 | |
653 0.0345550275733444640 | |
654 0.0158805448636159010 | |
655 -0.0090079761367322896 | |
656 -0.0025745176881279692 | |
657 0.00111751877082696180 | |
658 0.00046621695982014403 | |
659 -0.000070983302505704928 | |
660 -0.000034599773197402695 | |
661 | |
662 } | |
663 } | |
664 | |
665 { | |
666 Name Biorthogonal 1,3 | |
667 Type biorthogonal | |
668 { | |
669 Type symm | |
670 Length 6 | |
671 Start -1 | |
672 End 4 | |
673 | |
674 -0.08838834764832 | |
675 -0.08838834764832 | |
676 0.707106781 | |
677 -0.707106781 | |
678 0.08838834764832 | |
679 0.08838834764832 | |
680 | |
681 } | |
682 { | |
683 Type symm | |
684 Length 2 | |
685 Start 1 | |
686 End 2 | |
687 0.707106781 | |
688 0.707106781 | |
689 | |
690 } | |
691 | |
692 { | |
693 Type symm | |
694 Length 2 | |
695 Start 1 | |
696 End 2 | |
697 0.707106781 | |
698 -0.707106781 | |
699 } | |
700 { | |
701 Type symm | |
702 Length 6 | |
703 Start -1 | |
704 End 4 | |
705 | |
706 -0.08838834764832 | |
707 0.08838834764832 | |
708 0.707106781 | |
709 0.707106781 | |
710 0.08838834764832 | |
711 -0.08838834764832 | |
712 | |
713 } | |
714 } | |
715 | |
716 { | |
717 Name Biorthogonal 1,5 | |
718 Type biorthogonal | |
719 { | |
720 Type symm | |
721 Length 10 | |
722 Start -1 | |
723 End 8 | |
724 | |
725 0.01657281518406 | |
726 0.01657281518406 | |
727 -0.1215339780164 | |
728 -0.1215339780164 | |
729 0.707106781 | |
730 -0.707106781 | |
731 0.1215339780164 | |
732 0.1215339780164 | |
733 -0.01657281518406 | |
734 -0.01657281518406 | |
735 | |
736 } | |
737 { | |
738 Type symm | |
739 Length 2 | |
740 Start 3 | |
741 End 4 | |
742 | |
743 0.707106781 | |
744 0.707106781 | |
745 } | |
746 | |
747 { | |
748 Type symm | |
749 Length 2 | |
750 Start 3 | |
751 End 4 | |
752 | |
753 0.707106781 | |
754 -0.707106781 | |
755 } | |
756 { | |
757 Type symm | |
758 Length 10 | |
759 Start -1 | |
760 End 8 | |
761 | |
762 0.01657281518406 | |
763 -0.01657281518406 | |
764 -0.1215339780164 | |
765 0.1215339780164 | |
766 0.707106781 | |
767 0.707106781 | |
768 0.1215339780164 | |
769 -0.1215339780164 | |
770 -0.01657281518406 | |
771 0.01657281518406 | |
772 | |
773 } | |
774 } |