Mercurial > hg > wm
diff Meerwald/sort.c @ 0:be303a3f5ea8
import
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Sun, 12 Aug 2007 13:14:34 +0200 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Meerwald/sort.c Sun Aug 12 13:14:34 2007 +0200 @@ -0,0 +1,184 @@ +#include "sort.h" + +#define SWAP_GRAY(A, B) {gray t = A; A = B; B = t;} + +/* + * quicksort-alike, from the EMX library (emx/src/lib/misc/qsort.c) + * by Eberhard Mattes + * + * sort() is not stable, the order of equal elements is not defined + */ + +void _sort_grays(gray *l, gray *r) { + gray *i; + gray *j; + gray *x; + +redo: + i = l; + j = r; + x = l + sizeof(gray) * (((r-l) / sizeof(gray)) / 2); + + do { + while (i != x && *i < *x) + i++; + while (j != x && *j > *x) + j--; + if (i < j) { + SWAP_GRAY(*i, *j); + if (x == i) + x = j; + else if (x == j) + x = i; + } + if (i <= j) { + i++; + if (j > l) + j--; + } + } while (i <= j); + + if (j-l < r-i) { + if (l < j) + _sort_grays(l, j); + if (i < r) { + l = i; + goto redo; + } + } + else { + if (i < r) + _sort_grays(i, r); + if (l < j) { + r = j; + goto redo; + } + } +} + +void sort_grays(gray a[], int n) { + if (n > 1) + _sort_grays(&a[0], &a[n-1]); +} + +/* + * select_largest(), from the Numeric Recipes in C, Chapter 8, p. 344, + * see http://www.nr.com + * + * returns in largest[0..m-1] the largest m elements of array[0..n-1] + * with largest[0] guaranteed to be the mth largest element; largest[] is + * not sorted; the array[] is not altered; this function should be used + * only when m << n + */ + +void select_largest_grays(gray array[], int n, int m, gray largest[]) { + int i, j, k; + + if (m <= 0 || m > n/2) + return; + + for (i = 0; i < m; i++) + largest[i] = array[i]; + sort_grays(largest, m); + + for (i = m; i < n; i++) { + if (array[i] > largest[0]) { + largest[0] = array[i]; + j = 0; + k = 1; + while (k < m) { + if (k < m-1 && largest[k] > largest[k+1]) + k++; + if (largest[j] <= largest[k]) + break; + SWAP_GRAY(largest[k], largest[j]); + j = k; + k = k << 1; + } + } + } +} + +#define SWAP_DOUBLE(A, B) {double t = A; A = B; B = t;} + +void _sort_coeffs(double *l, double *r) { + double *i; + double *j; + double *x; + +redo: + i = l; + j = r; + x = l + sizeof(double) * (((r-l) / sizeof(double)) / 2); + + do { + while (i != x && *i < *x) + i++; + while (j != x && *j > *x) + j--; + if (i < j) { + SWAP_DOUBLE(*i, *j); + if (x == i) + x = j; + else if (x == j) + x = i; + } + if (i <= j) { + i++; + if (j > l) + j--; + } + } while (i <= j); + + if (j-l < r-i) { + if (l < j) + _sort_coeffs(l, j); + if (i < r) { + l = i; + goto redo; + } + } + else { + if (i < r) + _sort_coeffs(i, r); + if (l < j) { + r = j; + goto redo; + } + } +} + +void sort_coeffs(double a[], int n) { + if (n > 1) + _sort_coeffs(&a[0], &a[n-1]); +} + +void select_largest_coeffs(double array[], int n, int m, double largest[]) { + int i, j, k; + + if (m <= 0 || m > n/2) + return; + + for (i = 0; i < m; i++) + largest[i] = array[i]; + sort_coeffs(largest, m); + + for (i = m; i < n; i++) { + if (array[i] > largest[0]) { + largest[0] = array[i]; + j = 0; + k = 1; + while (k < m) { + if (k < m-1 && largest[k] > largest[k+1]) + k++; + if (largest[j] <= largest[k]) + break; + SWAP_DOUBLE(largest[k], largest[j]); + j = k; + k = k << 1; + } + } + } +} + +