Mercurial > hg > wm
diff Meerwald/wavelet.c @ 0:be303a3f5ea8
import
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Sun, 12 Aug 2007 13:14:34 +0200 |
parents | |
children | f83ef905a63d |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Meerwald/wavelet.c Sun Aug 12 13:14:34 2007 +0200 @@ -0,0 +1,2999 @@ +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <math.h> +#include "wavelet.h" +#include <ctype.h> + +static int read_char(FILE *fp); +static int read_int(FILE *fp); + +IntImage new_intimage(int width, int height) +{ + IntImage image; + + image = (IntImage) calloc(1,sizeof(struct IntImage_struct)); + if (image==NULL) goto error; + image->data = (IntPixel*) calloc(width*height,sizeof(IntPixel)); + if (image->data==NULL) goto error; + image->width = width; + image->height = height; + image->size = width*height; + image->bpp = 0; + image->min_val = (IntPixel) 0; + image->max_val = (IntPixel) 0; + + return image; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; +} + +Image new_image(int width, int height) +{ + Image image; + + image = (Image) calloc(1,sizeof(struct Image_struct)); + if (image==NULL) goto error; + image->data = (Pixel*) calloc(width*height,sizeof(Pixel)); + if (image->data==NULL) goto error; + image->width = width; + image->height = height; + image->size = width*height; + image->bpp = 0; + image->min_val = (Pixel) 0; + image->max_val = (Pixel) 0; + + return image; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; +} + + +void free_intimage(IntImage img) +{ + if (img) { + if (img->data) free(img->data); + free(img); + } +} + +void free_image(Image img) +{ + if (img) { + if (img->data) free(img->data); + free(img); + } +} + +/************************************************************************ + * Functionname: load_intimage + * -------------------------------------------------------------------- + * PARAMETER: + * file: filename of image + * max_val: scaling of grey values to [0..max_val] + * + * RETURN: + * Image that shoud be loaded, if not possible return NULL + * -------------------------------------------------------------------- + * DESCRIPTION: + * This function loads an IntImage (PGM, ASCII or binary + * encoded (P5 or P3 format) ) from a file. + ************************************************************************/ + +IntImage load_intimage(char *file, int max_val) +{ + IntImage img; + FILE *fp; + IntPixel *data; + int width, height, i, max, ch1, ch2; + + fp=fopen(file,"rb"); + if (fp==NULL) goto error; + + ch1=getc(fp); + ch2=getc(fp); + if (ch1!='P' || (ch2!='5' && ch2!='2')) goto error1; + + width=read_int(fp); + height=read_int(fp); + if ((width==0) || (height==0) ) goto error1; + max=read_int(fp); + + img=new_intimage(width,height); + + img->bpp=8; + + data=img->data; + for (i=0; i<img->size; i++) + { if (ch2=='5') + *data=getc(fp); + else + *data=read_int(fp); + data++; + } + fclose(fp); + return img; + + error1: + err_SimpleMessage(err_GetErrorMessage(Error_WrongFileFormat)); + return NULL; + error: + err_SimpleMessage(err_GetErrorMessage(Error_CantOpenFile)); + return NULL; +} + +/************************************************************************ + * Functionname: load_image + * -------------------------------------------------------------------- + * PARAMETER: + * file: filename of image + * max_val: scaling of grey values to [0..max_val] + * + * RETURN: + * Image that shoud be loaded, if not possible return NULL + * -------------------------------------------------------------------- + * DESCRIPTION: + * This function loads an IntImage with load_intimage + * and then converts to Image. + ************************************************************************/ +extern Image load_image(char *file, int max_val) +{ + Image img; + IntImage intimg; + + intimg = load_intimage(file, max_val); + if (!intimg) return NULL; + img = intimage_to_image(intimg); + if (!intimg) return NULL; + + return img; +} + +/************************************************************************/ +/* Functionname: save_image_P5 */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* img: Image that shoud be saved */ +/* file: filename of image */ +/* -------------------------------------------------------------------- */ +/* Description: save an image as PGM (P5 binary decoded) file */ +/* */ +/************************************************************************/ + +extern int save_image_P5(char *file, Image img) +{ FILE *fp; + Pixel *data; + long i; + int p; + + fp=fopen(file,"wb"); + if (fp==NULL) + goto error; + fprintf(fp,"P5\n"); + fprintf(fp,"%d %d\n%d ",img->width,img->height,255); + data=img->data; + for (i=0;i<img->size;i++) { + p=floor(*data+0.5); + if (p<0) p=0; + if (p>255) p=255; +/* putc(*data,fp); */ + putc(p,fp); + data++; + } + fclose(fp); + return 1; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_CantOpenFile)); + return 0; +} + +void clear_image(Image img) +{ + int i; + + PreCondition(img!=NULL,"image==NULL"); + + for (i=0;i<img->size;i++) + (img->data)[i]=(Pixel) 0; +} + +extern void copy_into_image(Image img1,Image img2,int x,int y) +/* copy img2 into img1 at position (x,y)*/ +{ + int start,i,j,aim; + Pixel *temp; + + temp=img2->data; + start=img1->width*y+x; + for (i=0;i<img2->height;i++) { + for (j=0;j<img2->width;j++) { + aim=start+j+img1->width*i; + img1->data[aim]=*temp; + temp++; + } + } +} + +extern void copy_into_intimage(IntImage img1,IntImage img2,int x,int y) +{/* copy img2 into img1 at position (x,y)*/ + + int start,i,j,aim; + IntPixel *temp; + + temp=img2->data; + start=img1->width*y+x; + for (i=0;i<img2->height;i++) + { + for (j=0;j<img2->width;j++) + { + aim=start+j+img1->width*i; + img1->data[aim]=*temp; + temp++; + } + } +} + +void copy_part_of_image_into_image(Image dest_img, int dest_x, int dest_y, + Image src_img, int src_x, int src_y, + int width, int height) +{ + Pixel *sp,*dp; + int y,siz; + + sp=get_pixel_adr(src_img,src_x,src_y); + dp=get_pixel_adr(dest_img,dest_x,dest_y); + + siz=width*sizeof(Pixel); + + for (y=0;y<height;y++) + { + memcpy(dp,sp,siz); + sp+=src_img->width; + dp+=dest_img->width; + } +} + +extern void copy_part_of_image(Image img1,Image img2,int x,int y) +/* copy part of img2 begining at position (x,y) into img1 */ +{ int i,j,width,height,start,step; + Pixel *data; + + width=img1->width; + height=img1->height; + start=img2->width*y+x; + data=img1->data; + for (i=0;i<height;i++) { + step=i*img2->width; + for (j=0;j<width;j++){ + *data=img2->data[start+j+step]; + data++; + } + } +} + + +extern void scale_image(Image img,int maximum) +/* scale image to [0..maximum]*/ +{ int i; + Pixel max,min,multi; + + for (i=0;i<img->size;i++) { + if (img->data[i]<min) min=img->data[i]; + else if (img->data[i]>max) max=img->data[i]; + } + + multi=(Pixel)maximum/(max-min); + for (i=0;i<img->size;i++) img->data[i]=multi*(img->data[i]-min); + img->min_val=0; + img->max_val=maximum; +} + +int string_to_pixel(char *str, Pixel *p) +{ + float ppp; + if (sscanf(str,"%f",&ppp)==1) + { + *p=(Pixel) ppp; + return 1; + } + else + { + *p=0.0; + return 0; + } +} + +Image intimage_to_image(IntImage i) +{ Image img; + int j; + + img=new_image(i->width,i->height); + if (img==NULL) goto error; + for (j=0;j<i->size;j++) + img->data[j]=(Pixel)i->data[j]; + img->bpp=i->bpp; + return img; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; +} +IntImage image_to_intimage(Image i) +{ IntImage img; + int j,multi=1,max,min; + + img=(IntImage)calloc(1,sizeof(struct IntImage_struct)); + if (img==NULL) goto error; + img->data=(IntPixel *)calloc(i->size,sizeof(IntPixel)); + if (img->data==NULL) goto error; + img->width=i->width; + img->height=i->height; + img->size=i->size; + img->bpp=i->bpp; + + max=i->max_val; + min=i->min_val; + if ((max-min)!=0) + multi=255.0/(max-min); + + for (j=0;j<img->size;j++) + img->data[j]=(int)((i->data[j]-min)*multi+0.5); + return img; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; + +} + +static int read_char(FILE *fp) +/*read a character from file, but skip any comments*/ +{ int ch; + + ch=getc(fp); + if (ch=='#'){ + do { + ch=getc(fp); + } while (ch!='\n' && ch!=EOF); + } + return ch; +} + + +static int read_int(FILE *fp) +/*read an ascii integer from file, and skip leading tabstops,new lines ...*/ +{ int r,ch; + + do { + ch=read_char(fp); + } while (ch==' ' || ch=='\n' || ch=='\t'); + + if (ch<'0' || ch>'9') + goto error; + + r=ch-'0'; + while ( (ch=read_char(fp)) >='0' && (ch <= '9') ) { + r*=10; + r+=ch-'0'; + } + return r; + error: + return 0; +} + +Image_tree new_image_tree() +{ + Image_tree t; + t=(Image_tree) calloc(1,sizeof(struct Image_tree_struct)); + t->entropy=0.0; + t->image=NULL; + t->coarse=t->horizontal=t->vertical=t->diagonal=t->doubletree=NULL; + t->level=0; + t->codec_data=NULL; + t->significance_map=NULL; + return t; +} + +void free_image_tree(Image_tree t) +{ + if (t->coarse) free_image_tree(t->coarse); + if (t->horizontal) free_image_tree(t->horizontal); + if (t->vertical) free_image_tree(t->vertical); + if (t->diagonal) free_image_tree(t->diagonal); + if (t->doubletree) free_image_tree(t->doubletree); + if (t->image) free_image(t->image); + if (t->significance_map) free_intimage(t->significance_map); + if (t->codec_data) free(t->codec_data); + t->image=NULL; + free(t); +} + +/*********************************************************************** + * Functionname: get_image_infos + * -------------------------------------------------------------------- + * Parameter: + * Image image: input image + * Pixel *min,*max,*avg,*var: return minimum, maximum, + * average and variance of current image + * -------------------------------------------------------------------- + * Description: + * get statistical information of Image + ************************************************************************/ + +void get_image_infos(Image image, Image_info info) +{ + int x,y; + Pixel p,sp,sp2; + + sp=sp2=(Pixel)0.0; + + p=get_pixel(image,0,0); + + info->min=info->max=p; + + for (y=0;y<image->height;y++) + for (x=0;x<image->width;x++) + { + p=get_pixel(image,x,y); + info->max=MAX(info->max,p); + info->min=MIN(info->min,p); + sp+=p; + sp2+=p*p; + } + sp=sp/image->width/image->height; + sp2=sp2/image->width/image->height; + + info->mean=sp; + info->var=sp2-sp*sp; + info->rms=sqrt(sp2); +} + +/*********************************************************************** + * Functionname: get_difference_image + * -------------------------------------------------------------------- + * Parameter: + * Image image1, image 2: input images + * + * Return: + * Image : difference of image1 and image 2, + * NULL if error occurs + ************************************************************************/ + +Image get_difference_image(Image image1, Image image2) +{ + Image diff; + int i,max,w,h; + Pixel *d,*i1,*i2; + + if ((!image1) || (!image2)) return NULL; + + w=image1->width; + h=image1->height; + + if (image2->width != w || image2->height != h) return NULL; + + diff=new_image(w,h); + max=w*h; + + d=diff->data; + i1=image1->data; + i2=image2->data; + + for (i=0;i<max;i++) + d[i]=i2[i]-i1[i]; + + return diff; +} + + +/************************************************************************/ +/* Functionname: get_intimage_infos */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* IntImage image: input image */ +/* IntPixel *min,*max, return minimum, maximum */ +/* Pixel *avg,*var: average and variance of current image */ +/* average and variance of current image */ +/* -------------------------------------------------------------------- */ +/* Description: */ +/* get statistical information of Image */ +/************************************************************************/ + +void get_intimage_infos(IntImage image, IntPixel *min, IntPixel *max, Pixel *avg, Pixel *var) +{ + int x,y; + Pixel p,sp,sp2; + + sp=sp2=(Pixel)0.0; + + p= (Pixel) get_intpixel(image,0,0); + *min=*max=p; + + for (y=0;y<image->height;y++) + for (x=0;x<image->width;x++) + { + p= (Pixel) get_intpixel(image,x,y); + *max=MAX(*max, (IntPixel) p); + *min=MIN(*min, (IntPixel) p); + sp+=p; + sp2+=p*p; + } + sp=sp/image->width/image->height; + sp2=sp2/image->width/image->height; + + *avg=sp; + *var=sp2-sp*sp; +} + +/************************************************************************/ +/* Functionname: init_zigzag */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* Zigzag_data_struct: */ +/* output: will be initialized, x/y hold coordinates of */ +/* the first pixel */ +/* int width,height: */ +/* input: width/height of image: */ +/* -------------------------------------------------------------------- */ +/* Description: */ +/* initializes Zigzag_data structure for use with next_zigzag */ +/************************************************************************/ + +void init_zigzag(Zigzag_data zz, int width, int height) +{ + zz->x=0; + zz->y=0; + zz->dir=zigzag_up; + zz->w=width; + zz->h=height; +} + +/************************************************************************/ +/* Functionname: next_zigzag */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* Zigzag_data_struct: */ +/* int x,y: */ +/* input: current position of zigzag-scan */ +/* output: next position of zigzag-scan */ +/* int w,h: width and height of image */ +/* enum zigzag_direction *dir: i/o: */ +/* direction moving thru the image */ +/* -------------------------------------------------------------------- */ +/* Description: */ +/* calculates the next point (x',y') of the zigzag-scan */ +/* through the image with size (w,h) */ +/************************************************************************/ + + +void next_zigzag(Zigzag_data zz) +{ + switch(zz->dir) + { + case zigzag_up: + if (zz->y==0) + { + if (zz->x==zz->w-1) + { + (zz->y)++; zz->dir=zigzag_down; + } + else + { + (zz->x)++; zz->dir=zigzag_down; + } + } + else + { + if (zz->x==zz->w-1) + { + (zz->y)++; zz->dir=zigzag_down; + } + else + { + (zz->x)++; (zz->y)--; + } + } + break; + + case zigzag_down: + + if (zz->x==0) + { + if (zz->y==zz->h-1) + { + (zz->x)++; zz->dir=zigzag_up; + } + else + { + (zz->y)++; zz->dir=zigzag_up; + } + } + else + { + if (zz->y==zz->h-1) + { + (zz->x)++; zz->dir=zigzag_up; + } + else + { + (zz->x)--;(zz->y)++; + } + } + break; + } +} + +Image get_absolute_image_scaled(Image img) +{ + Image out; + + int x,y; + + struct Image_info_struct info; + Pixel scale,p; + + out=new_image(img->width,img->height); + + get_image_infos(img, &info); + + scale=255/MAX(fabs(info.min),fabs(info.max)); + + for(y=0;y<img->height;y++) + for(x=0;x<img->width;x++) + { + p=get_pixel(img,x,y)*scale; + set_pixel(out,x,y,p); + } + return out; +} + +#define FLOOR_HALF(x) ((x)&1 ? ((x)-1)/2 : (x)/2) +#define CEILING_HALF(x) ((x)&1 ? ((x)+1)/2 : (x)/2) + +#define MOD(a,b) ( (a)<0 ? ((b)-((-(a))%(b))) : (a)%(b) ) + +Filter new_filter(int size) +{ + Filter f; + + Entering; + f=(Filter) calloc(1,sizeof(struct FilterStruct)); + f->data=(Pixel *)calloc(size,sizeof(Pixel)); + f->len=size; + f->hipass=0; + + Leaving; + return f; +} + +Pixel get_filter_center(Filter f) +{ + int i; + Pixel p, sum, norm; + + if (f==NULL) return 0; + + sum=norm=0; + + for (i=0;i<f->len;i++) + { + p=f->data[i]; + p=p*p; + norm += p; + sum += (i+f->start)*p; + } + p=sum/norm; + + return p; +} +int filter_cutoff(Image in, int in_start, int in_len, int in_step, + Image out, int out_start, int out_len, int out_step, + Filter f) +{ + int i,i2,j; + Pixel *out_pix, *in_pix, *f_data; + int fstart,fend; /* Source interval */ + + Entering; + + PreCondition(out_len == in_len/2,"out_len != in_len/2 !!!"); + +/* convolution: out[i]=sum_{j=start}^{end} (in[2*i-j]*f[j]) + + boundaries: image in [in_start ... in_start + in_len-1] + image out [out_start ... out_start + out_len-1] + filter f [0..f->len-1] = [f->start .. f->end] + cutoff at: +*/ + + for (i=0;i<out_len;i++) + { + i2=2*i; + + fstart=i2-(in_len-1); + fstart=MAX(fstart,f->start); + fend=MIN(i2,f->end); + +#ifdef TRACE + sprintf(dbgstr,"i=%d fstart=%d fend=%d\n",i,fstart,fend); + Trace(dbgstr); +#endif + + out_pix=out->data+out_start+i*out_step; + + in_pix=in->data+in_start+(i2-fstart)*in_step; + + f_data=f->data-f->start+fstart; + + for (j=fstart;j<=fend;j++,in_pix-=in_step,f_data++) + { + *out_pix += (*f_data) * (*in_pix); +#ifdef TRACE + + sprintf(dbgstr," j=%2d in: %4.2f filter: %4.2f [%4d] [%4d] opt : %4.2f %4.2f\n", + j, + in->data[in_start+in_step*(i2-j)], + f->data[j-f->start], + in_start+in_step*(i2-j), + j-f->start, + *in_pix, *f_data); + Trace(dbgstr); +#endif + } + } + + Leaving; + return 1; +} + + +int filter_inv_cutoff(Image in, int in_start, int in_len, int in_step, + Image out, int out_start, int out_len, int out_step, + Filter f) +{ + int i,j; + Pixel *out_pix, *in_pix, *f_data; + int fstart,fend; /* Source interval */ + Entering; + PreCondition(out_len == in_len*2,"out_len != in_len*2 !!!"); + +/* convolution: out[i]=sum_{j=start}^{end} (f[2*j-i]*in[j]) + + boundaries: image in [in_start ... in_start + in_len-1] + image out [out_start ... out_start + out_len-1] + filter f [0..f->len-1] = [f->start .. f->end] + cutoff at: +*/ + + for (i=0;i<out_len;i++) + { + fstart=CEILING_HALF(f->start+i); + fend=FLOOR_HALF(f->end+i); + fstart=MAX(fstart,0); + fend=MIN(fend,in_len-1); + +#ifdef TRACE + sprintf(dbgstr,"i=%d fstart=%d fend=%d\n",i,fstart,fend); + Trace(dbgstr); +#endif + out_pix=out->data+out_start+i*out_step; + + in_pix=in->data+in_start+fstart*in_step; + + f_data=f->data-f->start+2*fstart-i; + + for (j=fstart;j<=fend;j++,in_pix+=in_step,f_data+=2) + { + *out_pix += (*f_data) * (*in_pix); +#ifdef TRACE + sprintf(dbgstr," j=%2d in: %4.2f filter: %4.2f [%4d] [%4d] opt : %4.2f %4.2f\n", + j, + in->data[in_start+j*in_step], + f->data[2*j-i-f->start], + in_start+j*in_step, + 2*j-i-f->start, + *in_pix, *f_data); + Trace(dbgstr); +#endif + } + } + + Leaving; + return 1; +} + +int filter_periodical(Image in, int in_start, int in_len, int in_step, + Image out, int out_start, int out_len, int out_step, + Filter f) +{ + int i,i2,j; + Pixel *out_pix, *in_pix, *f_data; + int fstart,fend; + int istart; + int ipix_len; + + Entering; + PreCondition(out_len == in_len/2,"out_len != in_len/2 !!!"); + +/* convolution: out[i]=sum_{j=start}^{end} (in[2*i-j]*f[j]) + + boundaries: image in [in_start ... in_start + in_len-1] + image out [out_start ... out_start + out_len-1] + filter f [0..f->len-1] = [f->start .. f->end] +*/ + + ipix_len=in_len*in_step; + + for (i=0;i<out_len;i++) + { + i2=2*i; + + fstart=f->start; + fend=f->end; + + istart=(i2-fstart); + istart=MOD(istart,in_len); + +#ifdef TRACE + sprintf(dbgstr,"i=%d istart=%d\n",i,istart); + Trace(dbgstr); +#endif + + out_pix=out->data+out_start+i*out_step; + + in_pix=in->data+in_start+istart*in_step; + + f_data=f->data; + + for (j=fstart;j<=fend;j++,f_data++) + { + *out_pix += (*f_data) * (*in_pix); +#ifdef TRACE + + sprintf(dbgstr," j=%2d in: %4.2f filter: %4.2f [%4d] [%4d] opt : %4.2f %4.2f\n", + j, + in->data[in_start+in_step*((i2-j+in_len)%in_len)], + f->data[j-f->start], + in_start+in_step*((i2-j+in_len)%in_len), + j-f->start, + *in_pix, *f_data); + Trace(dbgstr); +#endif + in_pix-=in_step; + istart--; + if (istart<0) + { + istart+=in_len; + in_pix+=ipix_len; + } + } + } + + Leaving; + return 1; +} + +int filter_inv_periodical(Image in, int in_start, int in_len, int in_step, + Image out, int out_start, int out_len, int out_step, + Filter f) +{ + int i,j; + Pixel *out_pix, *in_pix, *f_data; + int fstart,fend; /* Source interval */ + int istart; + int ipix_len; + Entering; + PreCondition(out_len == in_len*2,"out_len != in_len*2 !!!"); + +/* convolution: out[i]=sum_{j=start}^{end} (f[2*j-i]*in[j]) + + boundaries: image in [in_start ... in_start + in_len-1] + image out [out_start ... out_start + out_len-1] + filter f [0..f->len-1] = [f->start .. f->end] +*/ + + ipix_len=in_len*in_step; + + for (i=0;i<out_len;i++) + { + fstart=CEILING_HALF(f->start+i); + fend=FLOOR_HALF(f->end+i); + + istart=MOD(fstart,in_len); +#ifdef TRACE + sprintf(dbgstr,"i=%d fstart=%d fend=%d istart=%d\n",i,fstart,fend,istart); + Trace(dbgstr); +#endif + out_pix=out->data+out_start+i*out_step; + + in_pix=in->data+in_start+istart*in_step; + + f_data=f->data-f->start+2*fstart-i; + + for (j=fstart;j<=fend;j++,f_data+=2) + { + *out_pix += (*f_data) * (*in_pix); +#ifdef TRACE + sprintf(dbgstr," j=%2d in: %4.2f filter: %4.2f [%4d] [%4d] opt : %4.2f %4.2f\n", + j, + in->data[in_start+(j % in_len)*in_step], + f->data[2*j-i-f->start], + in_start+(j%in_len)*in_step, + 2*j-i-f->start, + *in_pix, *f_data); + Trace(dbgstr); +#endif + in_pix+=in_step; + istart++; + if (istart>=in_len) + { + istart-=in_len; + in_pix-=ipix_len; + } + } + } + + Leaving; + return 1; +} + +int filter_mirror(Image in, int in_start, int in_len, int in_step, + Image out, int out_start, int out_len, int out_step, + Filter f) +{ + int i,i2,j; + Pixel *out_pix, *in_pix, *f_data; + int fstart,fend; + int in_pos; + + int in_dir,in_div,in_mod; + + Entering; + PreCondition(out_len == in_len/2,"out_len != in_len/2 !!!"); + +/* convolution: out[i]=sum_{j=start}^{end} (in[2*i-j]*f[j]) + + boundaries: image in [in_start ... in_start + in_len-1] + image out [out_start ... out_start + out_len-1] + filter f [0..f->len-1] = [f->start .. f->end] +*/ + + in_pix=in->data+in_start; + + for (i=0;i<out_len;i++) + { + i2=2*i; + + fstart=f->start; + fend=f->end; + + out_pix=out->data+out_start+i*out_step; + + f_data=f->data; + + for (j=fstart;j<=fend;j++) + { + in_pos=(i2-j); + if (in_pos<0) + { + in_pos=-in_pos; + if (in_pos>=in_len) continue; + } + if (in_pos>=in_len) + { + in_pos=2*in_len-2-in_pos; + if (in_pos<0) continue; + } + *out_pix += (f_data[j-fstart]) * (in_pix[in_pos*in_step]); + } + } + + Leaving; + return 1; +} + +int filter_inv_mirror(Image in, int in_start, int in_len, int in_step, + Image out, int out_start, int out_len, int out_step, + Filter f) +{ + int i,j; + Pixel *out_pix, *in_pix, *f_data; + int fstart,fend; /* Source interval */ + int in_pos,in_dir,in_div,in_mod; + + Entering; + PreCondition(out_len == in_len*2,"out_len != in_len*2 !!!"); + +/* convolution: out[i]=sum_{j=start}^{end} (f[2*j-i]*in[j]) + + boundaries: image in [in_start ... in_start + in_len-1] + image out [out_start ... out_start + out_len-1] + filter f [0..f->len-1] = [f->start .. f->end] +*/ + + /*fprintf(stderr,"inv started\n");*/ + for (i=0;i<out_len;i++) + { + fstart=CEILING_HALF(f->start+i); + fend=FLOOR_HALF(f->end+i); + + out_pix=out->data+out_start+i*out_step; + + in_pix=in->data+in_start; + +/* + printf("in: %4d - %4d flt: %4d - %4d [%s]\n",fstart,fend,2*fstart-i,2*fend-i, + (2*fstart-i<f->start || 2*fend-i>f->end) ? "error":"ok"); +*/ + /*fprintf(stderr,"inv[%d]\n",i);*/ + for (j=fstart;j<=fend;j++) + { + in_pos=j; + if (in_pos<0) + { + if (f->hipass) + in_pos=-in_pos-1; + else + in_pos=-in_pos; + if (in_pos>=in_len) continue; + } + if (in_pos>=in_len) + { + if (f->hipass) + in_pos=2*in_len-2-in_pos; + else + in_pos=2*in_len-1-in_pos; + if (in_pos<0) continue; + } + /*fprintf(stderr,"out+= %7.2f * %7.2f = %7.2f\n",f->data[2*j-i-f->start],in_pix[in_pos*in_step],f->data[2*j-i-f->start]*in_pix[in_pos*in_step]);*/ + *out_pix += f->data[2*j-i-f->start] * (in_pix[in_pos*in_step]); + } + } + + Leaving; + return 1; +} + +#define MAX_LINE 256 + +#define skip_blank(str) { while(isspace(*(str))) (str)++; } + +static int get_next_line(FILE *f, char *c) +{ + char *str,string[200]; + int len; + do + { + str=string; + if (!fgets(str,200,f)) + { + Trace("get_next_line: eof\n"); + goto error; + } + len=strlen(str); + while (len>=1 && isspace(str[len-1])) str[--len]=0; + while (isspace(*str)) str++; + } + while (strlen(str)==0 || *str=='#'); + strcpy(c,str); + return 1; +error: + return 0; +} + +static int next_line_str(FILE *f, char *tag, char *out) +{ + char str[MAX_LINE],*t_str; + + if (!get_next_line(f,str)) goto error; + t_str=strtok(str," "); + if (!t_str || strcmp(t_str,tag)) goto error; + t_str=strtok(NULL,"\n"); + if (!t_str) goto error; + skip_blank(t_str); + + strcpy(out,t_str); + return 1; +error: + return 0; +} + +static int next_line_str_alloc(FILE *f, char *tag, char **out) +{ + char str[MAX_LINE]; + if (!next_line_str(f,tag,str)) goto error; + + *out=malloc(strlen(str)+1); + strcpy(*out,str); + + return 1; +error: + return 0; +} + +static int next_line_int(FILE *f, char *tag, int *out) +{ + char str[MAX_LINE]; + if (next_line_str(f,tag,str) && sscanf(str,"%d",out)==1) + return 1; + else + return 0; +} + + +static Filter read_filter(FILE *f) +{ + char str[MAX_LINE]; + Filter filter; + int i; + + Entering; + + filter=calloc(1,sizeof(struct FilterStruct)); + + if (!next_line_str(f,"Type",str)) goto error1; + + if (!strcmp(str,"nosymm")) + { + filter->type=FTNoSymm; + } + else if (!strcmp(str,"symm")) + { + filter->type=FTSymm; + } + else if (!strcmp(str,"antisymm")) + { + filter->type=FTAntiSymm; + } + else + goto error1; + + if (!next_line_int(f,"Length",&(filter->len))) goto error1; + if (!next_line_int(f,"Start",&(filter->start))) goto error1; + if (!next_line_int(f,"End",&(filter->end))) goto error1; + + if ((filter->end-filter->start+1!=filter->len)) + { + Trace("error: len != end-start+1\n"); + goto error1; + } + + filter->data=calloc(filter->len,sizeof(Pixel)); + + for (i=0;i<filter->len;i++) + { + if (!get_next_line(f,str)) goto error2; + if (!string_to_pixel(str,filter->data+i)) + { + Trace("error: invalid filter-value\n"); + goto error2; + } + } + if (!get_next_line(f,str)) goto error2; + if (*str!='}') + { + Trace("error: '}' not found\n"); + goto error2; + } + + Leaving; + return filter; + +error2: + free(filter->data); + +error1: + free(filter); + + LeavingErr; + return NULL; + +} + +static FilterGH read_filter_gh(FILE *f) +{ + char str[MAX_LINE]; + FilterGH fgh; + Filter filter; + int i,max; + + Entering; + + fgh=calloc(1,sizeof(struct FilterGHStruct)); + + if (!next_line_str_alloc(f,"Name",&(fgh->name))) + { + Trace("error: 'Name' tag not found\n"); + goto error1; + } + + if (!next_line_str(f,"Type",str)) + { + Trace("error: 'Type' tag not found\n"); + goto error1; + } + + if (!strcmp(str,"orthogonal")) + { + fgh->type=FTOrtho; + max=2; + } + else if (!strcmp(str,"biorthogonal")) + { + fgh->type=FTBiOrtho; + max=4; + } + else if (!strcmp(str,"other")) + { + fgh->type=FTOther; + max=4; + } + else + { + Trace("error: expecting 'orthogonal', 'biorthogonal' or 'other' type-tag\n"); + goto error1; + } + + for (i=0;i<max;i++) + { + if (!get_next_line(f,str)) goto error2; + if (*str!='{') + { + Trace("error: '{' not found\n"); + goto error2; + } + if (!(filter=read_filter(f))) + { + Trace("error: read_filter failed\n"); + goto error2; + } + filter->hipass = !(i&1); + switch(i) + { + case 0: fgh->g=filter; break; + case 1: fgh->h=filter; break; + case 2: fgh->gi=filter; break; + case 3: fgh->hi=filter; break; + } + } + if (!get_next_line(f,str)) goto error2; + if (*str!='}') + { + Trace("error: '}' not found\n"); + goto error2; + } + + Leaving; + return fgh; + +error2: + if (fgh->g) free(fgh->g); + if (fgh->h) free(fgh->h); + if (fgh->gi) free(fgh->gi); + if (fgh->hi) free(fgh->hi); + +error1: + free(fgh); + + LeavingErr; + return NULL; +} + + +AllFilters load_filters(char *name) +{ + FILE *f; + char str[MAX_LINE]; + AllFilters a; + FilterGH fgh; + + Entering; + + PreCondition(name!=NULL,"name=NULL!"); + + f=fopen(name,"rt"); + if (!f) + { + Trace("error: fopen failed\n"); + goto error1; + } + + a=calloc(1,sizeof(struct AllFilterStruct)); + a->count=0; + + while (get_next_line(f,str)) + { + if (*str=='{') + { + fgh=read_filter_gh(f); + if (!fgh) + { + Trace("error: read_filter returned NULL\n"); + goto error2; + } + if (a->count) + a->filter=realloc(a->filter,(a->count+1)*sizeof(FilterGH)); + else + a->filter=malloc(sizeof(FilterGH)); + (a->filter)[a->count]=fgh; + a->count++; + } + else + { + Trace("error: '{' not found\n"); + goto error2; + } + } + + fclose(f); + + Leaving; + return a; + +error2: + fclose(f); +error1: + + LeavingErr; + return 0; +} + +#define doubletree_min 32 +#define best_basis_min 8 + +static int convolute_lines(Image output,Image input,Filter flt,enum FilterMethod method); +static int convolute_rows(Image output,Image input,Filter flt,enum FilterMethod method); +static int decomposition(Image t_img,Image coarse,Image horizontal,Image vertical, + Image diagonal,Filter g,Filter h,enum FilterMethod method); +static int compute_best(Image_tree tree,int level,int max_level,FilterGH *flt, + enum FilterMethod method,enum Information_Cost cost,double epsilon); +static double compute_entropy(Image img,enum Information_Cost cost,double epsilon); +static compute_levels(Image_tree tree,double *entropies,enum Information_Cost cost,double epsilon); +static free_levels(Image_tree tree,int best); + +static Pixel sumationq(Image img); +static Pixel normq(Image_tree tree); +static Pixel sumation_down(Image_tree tree, Pixel normq); +static Pixel compute_non_additive(Image_tree tree,int size,enum Information_Cost cost,double +epsilon,int down); + +/************************************************************************/ +/* Functionname: wavelettransform */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* original: Image that should be transformed */ +/* level: transform down to level */ +/* flt: transform with filters flt[0..level] */ +/* method: method of filtering */ +/* -------------------------------------------------------------------- */ +/* Description: Carries out the wavelettransform */ +/* */ +/************************************************************************/ +extern Image_tree wavelettransform(Image original,int level,FilterGH *flt,enum FilterMethod method) +{ int i,width,height,min,max_level,e; + Image coarsei,horizontali,verticali,diagonali,tempi; + Image_tree ret_tree,temp_tree; + + width=original->width; + height=original->height; + + tempi=new_image(width,height); + if(!tempi) goto error; + + copy_into_image(tempi,original,0,0); + + ret_tree=new_image_tree(); + if(!ret_tree) goto error; + + temp_tree=ret_tree; + ret_tree->level=0; + + min=original->width; + if (original->height<min) min=original->height; + max_level=log(min)/log(2)-2; + if (max_level<level) level=max_level; + + if (level<1) /* do not transform */ + { + ret_tree->image=tempi; + return ret_tree; + } + + /* decomposition */ + + for (i=0;i<level;i++) + { + + width=(width+1)/2; + height=(height+1)/2; + + coarsei=new_image(width,height); + horizontali=new_image(width,height); + verticali=new_image(width,height); + diagonali=new_image(width,height); + if(!coarsei||!horizontali||!verticali||!diagonali) goto error; + + e=decomposition(tempi,coarsei,horizontali,verticali,diagonali, + flt[i]->g,flt[i]->h,method); + if (!e) return NULL; + + temp_tree->coarse=new_image_tree(); + temp_tree->horizontal=new_image_tree(); + temp_tree->vertical=new_image_tree(); + temp_tree->diagonal=new_image_tree(); + + temp_tree->coarse->level=i+1; + temp_tree->horizontal->level=i+1; + temp_tree->vertical->level=i+1; + temp_tree->diagonal->level=i+1; + + temp_tree->horizontal->image=horizontali; + temp_tree->vertical->image=verticali; + temp_tree->diagonal->image=diagonali; + free_image(tempi); + + if (i!=(level-1)) + { + tempi=new_image(width,height); + copy_into_image(tempi,coarsei,0,0); + free_image(coarsei); + /*if i=level coarsei is inserted into the image tree + so we should not free coarsei on level-1*/ + } + + temp_tree=temp_tree->coarse; + + } + + temp_tree->image=coarsei; + return ret_tree; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; +} + +static Image_tree wavelettransform__wp(Image original, int current_level, int level, FilterGH *flt, enum FilterMethod method) +{ + int i, width, height, min, max_level, e; + Image coarse_image,horizontal_image,vertical_image,diagonal_image,temp_image; + Image_tree return_tree, temp_tree; + + width = original->width; + height = original->height; + + temp_image = new_image(width, height); + if (!temp_image) goto error; + + copy_into_image(temp_image, original, 0, 0); + + temp_tree = return_tree = new_image_tree(); + if (!return_tree) goto error; + + temp_tree->level = current_level; + + min = original->width; + if (original->height < min) min = original->height; + max_level = log(min) / log(2) - 2; + if (max_level < level) level = max_level; + + if (current_level >= level) { + return_tree->image = temp_image; + return return_tree; + } + + for (i = current_level; i < level; i++) { + width = (width + 1) / 2; + height = (height + 1) / 2; + + coarse_image = new_image(width, height); + horizontal_image = new_image(width, height); + vertical_image = new_image(width, height); + diagonal_image = new_image(width, height); + + if (!coarse_image || !horizontal_image || + !vertical_image || !diagonal_image) goto error; + + e = decomposition(temp_image, coarse_image, horizontal_image, + vertical_image, diagonal_image, + flt[i]->g, flt[i]->h, method); + if (!e) return NULL; + + temp_tree->coarse = new_image_tree(); + temp_tree->coarse->level = i+1; + temp_tree->horizontal = wavelettransform__wp(horizontal_image, i+1, level, flt, method); + temp_tree->vertical = wavelettransform__wp(vertical_image, i+1, level, flt, method); + temp_tree->diagonal = wavelettransform__wp(diagonal_image, i+1, level, flt, method); + + free_image(horizontal_image); + free_image(vertical_image); + free_image(diagonal_image); + free_image(temp_image); + + if (i != (level - 1)) { + temp_image = new_image(width, height); + copy_into_image(temp_image, coarse_image, 0, 0); + free_image(coarse_image); + } + + temp_tree = temp_tree->coarse; + } + + temp_tree->image = coarse_image; + return return_tree; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; +} + +extern Image_tree wavelettransform_wp(Image original, int level, FilterGH *flt, enum FilterMethod method) { + wavelettransform__wp(original, 0, level, flt, method); +} + + +/************************************************************************/ +/* Functionname: best_basis */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* original: Image to be transformed */ +/* level: best basis selection down to this level */ +/* flt: transform with filters flt[0..level] */ +/* method: transform with filter method */ +/* cost: carry best basis selection out with this costfunc */ +/* epsilon: limit for threshold method */ +/* -------------------------------------------------------------------- */ +/* Description: carries best basis and near best basis selection */ +/* out */ +/************************************************************************/ +extern Image_tree best_basis(Image original,int level,FilterGH *flt, + enum FilterMethod method,enum Information_Cost cost,double epsilon) + +{ Image_tree tree; + Image img; + int min,max_level,e; + + tree=new_image_tree(); + if(!tree) goto error; + + img=new_image(original->width,original->height); + if(!img) goto error; + + copy_into_image(img,original,0,0); + + tree->image=img; + + min=original->width; + if (original->height<min) min=original->height; + max_level=log10((float) min/best_basis_min)/log10(2); + if (max_level>level) max_level=level; + + e=compute_best(tree,0,max_level,flt,method,cost,epsilon); + + if (!tree->image) free(img); + + return tree; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; + +} +/************************************************************************/ +/* Functionname: best_level_selection */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* original: Image that should be transformed */ +/* maxlevel: transform down to level */ +/* flt: transform with filters flt[0..level] */ +/* method: transform with filter method */ +/* cost: carry best basis selection out with this costfunc */ +/* epsilon: limit for threshold method */ +/* -------------------------------------------------------------------- */ +/* Description: Carries out the best level selection */ +/* */ +/************************************************************************/ +extern Image_tree best_level(Image original,int maxlevel,int *bestlevel,FilterGH *flt,enum FilterMethod method, + enum Information_Cost cost,double epsilon) +{ Image_tree tree; + Image img; + double *entropies,min; + int best=0,i,e; + + img=new_image(original->width,original->height); + copy_into_image(img,original,0,0); + + tree=new_image_tree(); + tree->image=img; + + entropies=(double *)calloc(maxlevel+1,sizeof(double)); + if(!entropies) goto error; + + /* decompose down to maxlevel */ + e=decompose_all(tree,maxlevel,flt,method,cost,epsilon); + if (!e) return NULL; + + /* compute costs of each level and store it in entropies array*/ + compute_levels(tree,entropies,cost,epsilon); + + min=entropies[0]; + for (i=1;i<=maxlevel;i++) + { + if (entropies[i]<min) + { + min=entropies[i]; + best=i; + } + } + + /* free all other levels */ + free_levels(tree,best); + + *bestlevel=best; + + return tree; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; +} + +/************************************************************************/ +/* Functionname: compute_best */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* img: Image that should be transformed */ +/* level: transform level */ +/* max_level: transform to maximum level */ +/* flt: transform with filters flt[0..level] */ +/* method: transform with filter method */ +/* cost: carry best basis selection out with this costfunc */ +/* epsilon: limit for threshold method */ +/* -------------------------------------------------------------------- */ +/* Description: Carries out the best basis selection (recursivly) */ +/* (is needed by the waveletpacket procedure) */ +/************************************************************************/ +static int compute_best(Image_tree tree,int level,int max_level,FilterGH *flt, + enum FilterMethod method,enum Information_Cost cost,double epsilon) + +{ Image coarse,horizontal,vertical,diagonal; + int e,width,height; + double sum; + + tree->level=level; + + /* non additive cost function*/ + if (cost>=shanon) + { + tree->entropy=compute_non_additive(tree,tree->image->size,cost,epsilon,0); + } + /*additive cost function*/ + else tree->entropy=compute_entropy(tree->image,cost,epsilon); + + if (level<max_level) { + width=(tree->image->width+1)/2; + height=(tree->image->height+1)/2; + + tree->coarse=new_image_tree(); + tree->horizontal=new_image_tree(); + tree->vertical=new_image_tree(); + tree->diagonal=new_image_tree(); + + coarse=new_image(width,height); + horizontal=new_image(width,height); + vertical=new_image(width,height); + diagonal=new_image(width,height); + if(!coarse||!vertical||!horizontal||!diagonal) goto error; + + e=decomposition(tree->image,coarse,horizontal,vertical,diagonal,flt[0]->g,flt[0]->h,method); + if (!e) return 0; + + tree->coarse->image=coarse; + tree->horizontal->image=horizontal; + tree->vertical->image=vertical; + tree->diagonal->image=diagonal; + + e=compute_best(tree->coarse,level+1,max_level,flt+1,method,cost,epsilon); + e=compute_best(tree->horizontal,level+1,max_level,flt+1,method,cost,epsilon); + e=compute_best(tree->vertical,level+1,max_level,flt+1,method,cost,epsilon); + e=compute_best(tree->diagonal,level+1,max_level,flt+1,method,cost,epsilon); + if (!e) return 0; + + /*going back in recursion*/ + + if (cost>=shanon) { + sum=compute_non_additive(tree,tree->image->size,cost,epsilon,1); + } + else sum=(tree->coarse->entropy)+(tree->horizontal->entropy) + +(tree->vertical->entropy)+(tree->diagonal->entropy); + + if (tree->entropy>sum) + { + tree->entropy=sum; + free_image(tree->image); /* take down tree */ + tree->image=NULL; + + } + else + { /* delete the tree downwards */ + free_image_tree(tree->coarse); + free_image_tree(tree->horizontal); + free_image_tree(tree->vertical); + free_image_tree(tree->diagonal); + + tree->coarse=tree->vertical=tree->horizontal=tree->diagonal=NULL; + } + } + + return 1; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; + +} + +/************************************************************************/ +/* Functionname: decompose_all */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* tree: Image tree to be decomposed */ +/* maxlevel: decompose down to level */ +/* flt: transform with filters flt[0..maxlevel] */ +/* method: transform with filter method */ +/* cost: cost function for entropy computing */ +/* epsilon: limit for threshold method */ +/* -------------------------------------------------------------------- */ +/* Description: whole decompositing down to maxlevel */ +/* The original image must be in tree->image */ +/************************************************************************/ +extern int decompose_all(Image_tree tree,int maxlevel,FilterGH *flt,enum FilterMethod method, + enum Information_Cost cost,double epsilon) +{ + Image original,coarse,horizontal,vertical,diagonal; + int e,width,height,level; + + if (tree->level<maxlevel) + { + tree->coarse=new_image_tree(); + tree->horizontal=new_image_tree(); + tree->vertical=new_image_tree(); + tree->diagonal=new_image_tree(); + + original=tree->image; + width=(original->width+1)/2; + height=(original->height+1)/2; + level=tree->level; + + coarse=new_image(width,height); + horizontal=new_image(width,height); + vertical=new_image(width,height); + diagonal=new_image(width,height); + if(!coarse||!vertical||!horizontal||!diagonal) goto error; + + + e=decomposition(tree->image,coarse,horizontal,vertical,diagonal,flt[0]->g,flt[0]->h,method); + if (!e) return 0; + + tree->coarse->image=coarse; + tree->horizontal->image=horizontal; + tree->vertical->image=vertical; + tree->diagonal->image=diagonal; + + tree->coarse->entropy=compute_entropy(coarse,cost,epsilon); + tree->horizontal->entropy=compute_entropy(horizontal,cost,epsilon); + tree->vertical->entropy=compute_entropy(vertical,cost,epsilon); + tree->diagonal->entropy=compute_entropy(diagonal,cost,epsilon); + + tree->coarse->level=tree->horizontal->level= + tree->vertical->level=tree->diagonal->level=level+1; + + e=decompose_all(tree->coarse,maxlevel,flt+1,method,cost,epsilon); + e=decompose_all(tree->horizontal,maxlevel,flt+1,method,cost,epsilon); + e=decompose_all(tree->vertical,maxlevel,flt+1,method,cost,epsilon); + e=decompose_all(tree->diagonal,maxlevel,flt+1,method,cost,epsilon); + if (!e) return 0; + + } + + return 1; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} + +/************************************************************************/ +/* Functionname: compute_levels */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* tree: Image tree where the entropy should be computed */ +/* entropies : array for entropy */ +/* cost: carry best basis selection out with this costfunc */ +/* epsilon: limit for threshold method */ +/* -------------------------------------------------------------------- */ +/* Description: Compute the entropies of all decomposition levels */ +/************************************************************************/ +static compute_levels(Image_tree tree,double *entropies,enum Information_Cost cost,double epsilon) +{ + if (tree->image){ + entropies[tree->level]+=compute_entropy(tree->image,cost,epsilon); + } + if (tree->coarse) compute_levels(tree->coarse,entropies,cost,epsilon); + if (tree->horizontal) compute_levels(tree->horizontal,entropies,cost,epsilon); + if (tree->vertical) compute_levels(tree->vertical,entropies,cost,epsilon); + if (tree->diagonal) compute_levels(tree->diagonal,entropies,cost,epsilon); + +} + +/************************************************************************/ +/* Functionname: free_levels */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* tree: Image tree which should be cleaned */ +/* best: best level */ +/* -------------------------------------------------------------------- */ +/* Description: clean the image tree except the best level */ +/************************************************************************/ +static free_levels(Image_tree tree,int best) +{ + if (tree->level<best) + { + free_image(tree->image); + tree->image=NULL; + free_levels(tree->coarse,best); + free_levels(tree->horizontal,best); + free_levels(tree->vertical,best); + free_levels(tree->diagonal,best); + } + else + { + if (tree->coarse) + { + free_image_tree(tree->coarse); + free_image_tree(tree->horizontal); + free_image_tree(tree->vertical); + free_image_tree(tree->diagonal); + tree->coarse=tree->horizontal=tree->vertical=tree->diagonal=NULL; + } + } +} + +/************************************************************************/ +/* Functionname: decompose_to_level */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* original: original image */ +/* level: decompose to level */ +/* flt: decompos with filters[0..level] */ +/* method: transform with filter method */ +/* -------------------------------------------------------------------- */ +/* Description: Decomposes an image to an certain level and stores */ +/* only this level in the returned quadtree */ +/************************************************************************/ +extern Image_tree decompose_to_level(Image original,int level,FilterGH *flt,enum FilterMethod method) +{ Image_tree tree; + int e; + + tree=new_image_tree(); + tree->image=original; + + e=decompose_all(tree,level,flt,method,entropy,1); + if (!e) return NULL; + + free_levels(tree,level); + + return tree; + +} + +/************************************************************************/ +/* Functionname: decomposition */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* t_img: Image which should be decomposed */ +/* coarse,horizontal,vertical,diagonal: */ +/* decomposed images */ +/* method: transform with filter method */ +/* g,h: the transformation is carried out with these filters*/ +/* -------------------------------------------------------------------- */ +/* Description: This carries out one wavelettransformation */ +/* using waveletfilters. */ +/************************************************************************/ + +static int decomposition(Image t_img,Image coarse,Image horizontal,Image vertical, + Image diagonal,Filter g,Filter h,enum FilterMethod method) +{ Image temp1; + + /*coarse*/ + temp1=new_image(coarse->width,t_img->height); + if(!temp1) goto error; + convolute_lines(temp1,t_img,h,method); + convolute_rows(coarse,temp1,h,method); + + /*horizontal*/ + convolute_rows(horizontal,temp1,g,method); + free_image(temp1); + + /*vertical*/ + temp1=new_image(vertical->width,t_img->height); + if(!temp1) goto error; + convolute_lines(temp1,t_img,g,method); + convolute_rows(vertical,temp1,h,method); + + /*diagonal*/ + convolute_rows(diagonal,temp1,g,method); + free_image(temp1); + + return 1; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; + +} + +/************************************************************************/ +/* Functionname: inv_decomposition */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* sum: reconstructed image */ +/* coarse,horizontal,vertical,diagonal: images to carry out*/ +/* the inverse transformation */ +/* flt_gh: transform with filters g and h */ +/* method: transform with filter method */ +/* -------------------------------------------------------------------- */ +/* Description: Carries out the wavelettransform */ +/* */ +/************************************************************************/ +static int inv_decomposition(Image sum,Image coarse,Image horizontal,Image vertical, + Image diagonal,FilterGH flt_gh,enum FilterMethod method) +{ Image temp1; + Filter g,h; + + if (flt_gh->type==FTOrtho) { + g=flt_gh->g; + h=flt_gh->h; + } + else { + g=flt_gh->gi; + h=flt_gh->hi; + } + + /*coarse*/ + temp1=new_image(coarse->width,sum->height); + if(!temp1) goto error; + convolute_rows(temp1,coarse,h,method); + + /*horizontal*/ + convolute_rows(temp1,horizontal,g,method); + convolute_lines(sum,temp1,h,method); + free_image(temp1); + + /*vertical*/ + temp1=new_image(vertical->width,sum->height); + if(!temp1) goto error; + convolute_rows(temp1,vertical,h,method); + + /*diagonal*/ + convolute_rows(temp1,diagonal,g,method); + convolute_lines(sum,temp1,g,method); + + free_image(temp1); + + return 1; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} + +/************************************************************************/ +/* Functionname: build_image */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* quadtree: quadtree with decomposition information */ +/* width,height: image width and height */ +/* RETURN: returns the build up image */ +/* -------------------------------------------------------------------- */ +/* Description: builds up an image out of an Image_tree */ +/* */ +/************************************************************************/ +extern Image build_image(Image_tree quadtree,int width,int height) +{ Image ret_img,coarse,horizontal,vertical,diagonal; + + + ret_img=new_image(width,height); + if(!ret_img) goto error; + + width=(width+1)/2; + height=(height+1)/2; + + if (!(quadtree->image)) { + coarse=build_image(quadtree->coarse,width,height); + horizontal=build_image(quadtree->horizontal,width,height); + vertical=build_image(quadtree->vertical,width,height); + diagonal=build_image(quadtree->diagonal,width,height); + if (!coarse||!horizontal||!vertical||!diagonal) return NULL; + + copy_into_image(ret_img,coarse,0,0); + copy_into_image(ret_img,horizontal,width,0); + copy_into_image(ret_img,vertical,0,height); + copy_into_image(ret_img,diagonal,width,height); + + if (!quadtree->coarse->image) free_image(coarse); + if (!quadtree->horizontal->image) free_image(horizontal); + if (!quadtree->vertical->image) free_image(vertical); + if (!quadtree->diagonal->image) free_image(diagonal); + + return ret_img; + } + else return quadtree->image; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; +} + +/************************************************************************/ +/* Functionname: inv_transform */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* tree: tree with decomposition information */ +/* flt_gh: transform with filters g and h */ +/* method: transform with filter method */ +/* -------------------------------------------------------------------- */ +/* Description: Inverts the wavelettransform,best_basis,best_level */ +/* */ +/************************************************************************/ +extern Image inv_transform(Image_tree tree,FilterGH *flt, + enum FilterMethod method) + +{ int er,width,height; + Image ret_img,coarse,vertical,horizontal,diagonal; + + if (!tree->image) { + + coarse=inv_transform(tree->coarse,flt,method); + horizontal=inv_transform(tree->horizontal,flt,method); + vertical=inv_transform(tree->vertical,flt,method); + diagonal=inv_transform(tree->diagonal,flt,method); + if (!coarse||!horizontal||!vertical||!diagonal) return NULL; + + width=coarse->width+horizontal->width; + height=coarse->height+vertical->height; + + ret_img=new_image(width,height); + if(!ret_img) goto error; + + + if (tree->flag==0) /*if flag is set it is a doubletree tiling*/ + { +// er=inv_decomposition(ret_img,coarse,horizontal,vertical,diagonal,flt[1],method); + er=inv_decomposition(ret_img,coarse,horizontal,vertical,diagonal,flt[tree->level],method); + if (!er) return NULL; + } + else + { + copy_into_image(ret_img,coarse,0,0); + copy_into_image(ret_img,horizontal,coarse->width,0); + copy_into_image(ret_img,vertical,0,coarse->height); + copy_into_image(ret_img,diagonal,coarse->width,coarse->height); + } + + if (!tree->coarse->image) free_image(coarse); + if (!tree->horizontal->image) free_image(horizontal); + if (!tree->vertical->image) free_image(vertical); + if (!tree->diagonal->image) free_image(diagonal); + + return ret_img; + } + + else return tree->image; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return NULL; +} + +/************************************************************************/ +/* Functionname: find_deepest_level */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* -------------------------------------------------------------------- */ +/* Description: Finds the deepest possible level where width and */ +/* height can divided by two exactly. */ +/************************************************************************/ +extern int find_deepest_level(int width,int height) +{ + int level=0,w=width,h=height; + + while ( !((w%2)||(h%2))) + { + w=w/2; + h=h/2; + level++; + } + + return level-1; + +} + +/************************************************************************/ +/* Functionname: convolute_lines */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* output: output image of wavelettransformation */ +/* input: input image for decomposition */ +/* flt: transform with filter flt */ +/* method: transform with filter method */ +/* -------------------------------------------------------------------- */ +/* Description: Carries out the wavelettransform for all lines of */ +/* the input image */ +/************************************************************************/ +static int convolute_lines(Image output,Image input,Filter flt,enum FilterMethod method) +/*Convolute the lines with filter*/ +{ int i; + + for (i=0;i<input->height;i++) { + switch(method) { + case cutoff: + filter_cutoff(input,input->width*i,input->width,1, + output,output->width*i,output->width,1,flt); + break; + case inv_cutoff: + filter_inv_cutoff(input,input->width*i,input->width,1, + output,output->width*i,output->width,1,flt); + break; + case periodical: + filter_periodical(input,input->width*i,input->width,1, + output,output->width*i,output->width,1,flt); + break; + case inv_periodical: + filter_inv_periodical(input,input->width*i,input->width,1, + output,output->width*i,output->width,1,flt); + break; + case mirror: + filter_mirror(input,input->width*i,input->width,1, + output,output->width*i,output->width,1,flt); + break; + case inv_mirror: + filter_inv_mirror(input,input->width*i,input->width,1, + output,output->width*i,output->width,1,flt); + break; + + + } + } + + return 1; +} + +/************************************************************************/ +/* Functionname: convolute_rows */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* output: output image of wavelettransformation */ +/* input: input image for decomposition */ +/* flt: transform with filter flt */ +/* method: transform with filter method */ +/* -------------------------------------------------------------------- */ +/* Description: Carries out the wavelettransform for all rows of */ +/* the input image */ +/************************************************************************/ +static int convolute_rows(Image output,Image input,Filter flt,enum FilterMethod method) +/*Convolute the rows with filter*/ +{ int i; + + for (i=0;i<input->width;i++) + { + switch (method) + { + case cutoff: + filter_cutoff(input,i,input->height,input->width, + output,i,output->height,output->width,flt); + break; + case inv_cutoff: + filter_inv_cutoff(input,i,input->height,input->width, + output,i,output->height,output->width,flt); + break; + case periodical: + filter_periodical(input,i,input->height,input->width, + output,i,output->height,output->width,flt); + break; + case inv_periodical: + filter_inv_periodical(input,i,input->height,input->width, + output,i,output->height,output->width,flt); + break; + case mirror: + filter_mirror(input,i,input->height,input->width, + output,i,output->height,output->width,flt); + break; + case inv_mirror: + filter_inv_mirror(input,i,input->height,input->width, + output,i,output->height,output->width,flt); + break; + + } + } + return 1; +} + +/************************************************************************/ +/* Functionname: sumationq */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* img: image to compute */ +/* -------------------------------------------------------------------- */ +/* Description: compute the sum of quadrats of all elements of */ +/* the input image */ +/************************************************************************/ +static Pixel sumationq(Image img) +{ Pixel sum=0; + int i; + + for (i=0;i<img->size;i++) { + sum+=(*img->data+i)*(*img->data+i); + } + return sum; +} + +/************************************************************************/ +/* Functionname: normq */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* tree: tree to compute */ +/* -------------------------------------------------------------------- */ +/* Description: computes the quadratic norm over all images in */ +/* the input tree */ +/************************************************************************/ +static Pixel normq(Image_tree tree) +{ Pixel sum=0; + + if (tree->image) + { + sum=sumationq(tree->image); + } + else + { + if (tree->coarse) sum+=normq(tree->coarse); + if (tree->horizontal) sum+=normq(tree->horizontal); + if (tree->vertical) sum+=normq(tree->vertical); + if (tree->diagonal) sum+=normq(tree->diagonal); + } + + return sum; +} + +/************************************************************************/ +/* Functionname: sumation_down */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* tree: tree to compute */ +/* normq: norm of the images in the tree */ +/* -------------------------------------------------------------------- */ +/* Description: computes the Entropy over all (string aded) images */ +/* in the input tree */ +/************************************************************************/ +static Pixel sumation_down(Image_tree tree, Pixel normq) +{ Pixel sum=0,p; + int i; + Image img; + Pixel *data; + + if (tree->image) + { + img=tree->image; + data=img->data; + for (i=0;i<img->size;i++,data++) + { + if (*data!=0) + { + p=(*data)*(*data)/normq; + sum+=p*log(1/p); + } + } + } + else + { + if (tree->coarse) sum+=sumation_down(tree->coarse,normq); + if (tree->horizontal) sum+=sumation_down(tree->horizontal,normq); + if (tree->vertical) sum+=sumation_down(tree->vertical,normq); + if (tree->diagonal) sum+=sumation_down(tree->diagonal,normq); + } + + return sum; +} + +/************************************************************************/ +/* Functionname: comp */ +/* -------------------------------------------------------------------- */ +/* Description: used for quicksort for decreasing order */ +/************************************************************************/ +int comp(const Pixel *x,const Pixel *y) +{ + if (*x<*y) return 1; + else if (*x==*y) return 0; + else return -1; +} + +/************************************************************************/ +/* Functionname: recarea */ +/* tree: Image tree to compute */ +/* list: target list */ +/* list_size: actual size of the list */ +/* -------------------------------------------------------------------- */ +/* Description: copies all elements within the tree into an list */ +/************************************************************************/ +static void recarea(Image_tree tree,Pixel *list,int *list_size) +{ Image img; + + if (tree->image) + { + img=tree->image; + memcpy(list+(*list_size),img->data,img->size*sizeof(Pixel)); + *list_size+=img->size; + } + else + { + if (tree->coarse) recarea(tree->coarse,list,list_size); + if (tree->horizontal) recarea(tree->horizontal,list,list_size); + if (tree->vertical) recarea(tree->vertical,list,list_size); + if (tree->diagonal) recarea(tree->diagonal,list,list_size); + } + +} + +static void abs_list(Pixel *list,int list_size) +{ + int i; + + for (i=0;i<list_size;i++) list[i]=fabs(list[i]); +} + +/************************************************************************/ +/* Functionname: sum_list */ +/* -------------------------------------------------------------------- */ +/* Description: computes the sum of all poweres list elements */ +/************************************************************************/ +static Pixel sum_list(Pixel *list,int p,int size) +{ Pixel sum=0; + int i; + + for (i=0;i<size;i++) + { + if (p!=1) sum+=pow(list[i],p); + else sum+=list[i]; + } + return sum; +} + +static Pixel weak_lp(Image_tree tree,int size,int p,double epsilon) +{ Pixel wlp,*list,max=0; + int *list_size,k; + + list_size=(int *)malloc(sizeof(int)); + if (!list_size) goto error; + + *list_size=0; + + list=(Pixel *)calloc(size,sizeof(Pixel)); + if (!list) goto error; + + recarea(tree,list,list_size); + abs_list(list,*list_size); + + qsort(list,*list_size, sizeof(Pixel), &comp); + + for (k=0;k<size;k++) + { + if (k!=0) wlp=pow(k,1/p)*list[k]; + else wlp=0; + if (wlp>max) max=wlp; + } + + free(list); + + return max; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} + +static Pixel comp_number(Image_tree tree,int size,int p,double f) +{ Pixel sum=0,*list,min,norm,npf,normf; + int *list_size=0,k; + + list_size=(int *)malloc(sizeof(int)); + if (!list_size) goto error; + *list_size=0; + + list=(Pixel *)calloc(size,sizeof(Pixel)); + if (!list) goto error; + recarea(tree,list,list_size); + abs_list(list,*list_size); + + qsort(list,*list_size, sizeof(Pixel), &comp); + + norm=sum_list(list,p,size); + normf=norm*f; + + for (k=0;k<size;k++) + { + if (list[k]!=0) + { + sum+=pow(list[k],p); + npf=fabs(sum-normf); + if (npf<min) min=npf; + } + } + min=min/norm; + + free(list); + + return min; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} + +static Pixel comp_area(Image_tree tree,int size,int p,double f) +{ Pixel sum=0,*list,norm,vk=0; + int *list_size=0,k; + + list_size=(int *)malloc(sizeof(int)); + if (!list_size) goto error; + *list_size=0; + + list=(Pixel *)calloc(size,sizeof(Pixel)); + if (!list) goto error; + + recarea(tree,list,list_size); + abs_list(list,*list_size); + + qsort(list,*list_size, sizeof(Pixel), &comp); + + norm=sum_list(list,p,size); + + for (k=0;k<size;k++) + { + if (list[k]!=0) + { + vk+=pow(list[k],p); + sum+=vk; + + } + } + + free(list); + + return (size-sum/norm); + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} + +static Pixel compute_sdiscrepancy(Image_tree tree,int size) +{ Pixel *list,min,max,factor,maximum=0,x; + int *list_size=0,k; + + list_size=(int *)malloc(sizeof(int)); + if (!list_size) goto error; + *list_size=0; + + list=(Pixel *)calloc(size,sizeof(Pixel)); + if (!list) goto error; + + recarea(tree,list,list_size); + + qsort(list,*list_size, sizeof(Pixel), &comp); + + min=list[0]; + max=list[size-1]; + factor=1/(max-min); + + /*scaling to [0,1]*/ + for (k=0;k<size;k++) + { + list[k]=factor*(list[k]-min); + } + + for (k=0;k<size;k++) + { + x=fabs(list[k]-(2*k-1)/(2*size)); + if (x>maximum) maximum=x; + } + + free(list); + + return (1/(2*size)+maximum); + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} + +static Pixel compute_discrepancy(Image_tree tree,int size) +{ Pixel *list,min,max,factor,maximum=0,minimum=0,x; + int *list_size=0,k; + + list_size=(int *)malloc(sizeof(int)); + if (!list_size) goto error; + *list_size=0; + + list=(Pixel *)calloc(size,sizeof(Pixel)); + if (!list) goto error; + + recarea(tree,list,list_size); + + qsort(list,*list_size, sizeof(Pixel), &comp); + + min=list[0]; + max=list[size-1]; + factor=1/(max-min); + + /*scaling to [0,1]*/ + for (k=0;k<size;k++) + { + list[k]=factor*(list[k]-min); + } + + for (k=0;k<size;k++) + { + x=((Pixel)k/size-list[k]); + if (x>maximum) maximum=x; + else if (x<minimum) minimum=x; + + } + + free(list); + + return (1/size+maximum-minimum); + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} + +static Pixel compute_concentration(Image_tree tree,int size) +{ Pixel *list,min,max,factor,lkm=0,length,sum=0,value,norm; + int *list_size=0,k,next=0,last=0,i=0; + + list_size=(int *)malloc(sizeof(int)); + if (!list_size) goto error; + *list_size=0; + + list=(Pixel *)calloc(size+1,sizeof(Pixel)); + if (!list) goto error; + + recarea(tree,list,list_size); + + qsort(list,*list_size, sizeof(Pixel), &comp); + + min=list[0]; + max=list[size-1]; + length=(max-min)/100; + + factor=1/(max-min); + for (k=0;k<size;k++) + { + list[k]=factor*(list[k]-min); + } + + norm=size*sum_list(list,1,size); + length=0.01; + value=length; + + list[size]=max+value; + + for (k=0;k<100;k++) + { + while ((list[i]<value)&(i<size)) + { + sum+=list[i]; + next++; + i++; + } + lkm+=(next-last)*sum/norm; + value+=length; + last=next; + sum=0; + } + + return -lkm; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} +/************************************************************************/ +/* Functionname: compute_entropy */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* img: Image from which the entropy should be computed */ +/* cost: choosen costfunction */ +/* epsilon: limit for threshold method */ +/* -------------------------------------------------------------------- */ +/* Description: computes entropy of an image */ +/************************************************************************/ +static double compute_entropy(Image img,enum Information_Cost cost,double epsilon) +{ double sum=0,x=0; + int i; + Pixel *data; + + data=img->data; + + switch(cost) { + + case threshold: + for(i=0;i<img->size;i++) + if (fabs(img->data[i])>epsilon) sum++; + break; + + case log_energy: + for(i=0;i<img->size;i++,data++) { + x=(*data) * (*data); + if (x!=0) sum+=(x*log(1/x)); + } + break; + + case norml: + for(i=0;i<img->size;i++,data++) { + x=fabs(*data); + sum+=x; + } + break; + + case norml2: + for(i=0;i<img->size;i++,data++) { + x=(*data) * (*data); + sum+=x; + } + sum=pow(sum,0.5); + break; + + case entropy: + for(i=0;i<img->size;i++,data++) { + x=(*data)*(*data); + if (x!=0) sum-=(x*log(x)); + } + break; + + case gauss_markov: + for(i=0;i<img->size;i++) { + x=(img->data[i])*(img->data[i]); + if (x!=0) sum+=log(x*x); + } + break; + + } + + return sum; +} + +/************************************************************************/ +/* Functionname: compute_non_additive */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* tree: Image tree from which the entropy should be */ +/* computed */ +/* size : size of the image */ +/* cost: choosen costfunction */ +/* epsilon: limit for threshold method */ +/* down: decides if only the first image should be computed*/ +/* -------------------------------------------------------------------- */ +/* Description: computes entropy of an image */ +/************************************************************************/ +static Pixel compute_non_additive(Image_tree tree,int size,enum Information_Cost cost,double epsilon,int down) +{ Pixel sum=0,normx; + Image img; + + if (down) + { + img=tree->image; + tree->image=NULL; + } + switch (cost) + { + case shanon: + normx=normq(tree); + sum=-sumation_down(tree,normx); + + break; + case weak_l: + sum=weak_lp(tree,size,1,epsilon); + break; + case weak_lq: + sum=weak_lp(tree,size,2,epsilon); + break; + case compression_number: + sum=comp_number(tree,size,1,epsilon); + break; + case compression_numberq: + sum=comp_number(tree,size,2,epsilon); + break; + case compression_area: + sum=comp_area(tree,size,1,epsilon); + break; + case compression_areaq: + sum=comp_area(tree,size,2,epsilon); + break; + case discrepancy: + sum=compute_discrepancy(tree,size); + break; + case sdiscrepancy: + sum=compute_sdiscrepancy(tree,size); + break; + case concentration: + sum=compute_concentration(tree,size); + break; + + + } + + if (down) tree->image=img; + + return sum; +} + +extern int rec_double(Image_tree dtree,int level,FilterGH *flt,enum FilterMethod method,enum Information_Cost cost,double epsilon) + +{ int min,width,height; + double sum=0; + Image c,h,v,d; + + dtree->level=0; + + if (cost>=shanon) + { + dtree->entropy=compute_non_additive(dtree,dtree->image->size,cost,epsilon,0); + } + else dtree->entropy=compute_entropy(dtree->image,cost,epsilon); + + dtree->doubletree=best_basis(dtree->image,level,flt,method,cost,epsilon); + + min=dtree->image->width; + if (dtree->image->height<min) min=dtree->image->height; + + if (doubletree_min<min) + { + width=(dtree->image->width+1)/2; + height=(dtree->image->height+1)/2; + + dtree->coarse=new_image_tree(); + dtree->horizontal=new_image_tree(); + dtree->vertical=new_image_tree(); + dtree->diagonal=new_image_tree(); + + c=new_image(width,height); + h=new_image(width,height); + v=new_image(width,height); + d=new_image(width,height); + if(!c||!h||!v||!d) goto error; + + + copy_part_of_image(c,dtree->image,0,0); + copy_part_of_image(h,dtree->image,width,0); + copy_part_of_image(v,dtree->image,0,height); + copy_part_of_image(d,dtree->image,width,height); + + dtree->coarse->image=c; + dtree->horizontal->image=h; + dtree->vertical->image=v; + dtree->diagonal->image=d; + + rec_double(dtree->coarse,level,flt,method,cost,epsilon); + rec_double(dtree->horizontal,level,flt,method,cost,epsilon); + rec_double(dtree->vertical,level,flt,method,cost,epsilon); + rec_double(dtree->diagonal,level,flt,method,cost,epsilon); + + /* going back in recursion*/ + + sum=dtree->coarse->entropy+dtree->horizontal->entropy+ + dtree->vertical->entropy+dtree->diagonal->entropy; + + if (sum>dtree->entropy) + { + /*take image*/ + + free_image_tree(dtree->coarse); + free_image_tree(dtree->horizontal); + free_image_tree(dtree->vertical); + free_image_tree(dtree->diagonal); + dtree->coarse=dtree->horizontal=dtree->vertical=dtree->diagonal=NULL; + } + else + { /*take tiling*/ + dtree->entropy=sum; + free_image(dtree->image); + dtree->image=NULL; + } + + if (dtree->entropy>dtree->doubletree->entropy) + { + /*take best basis tree*/ + + dtree->entropy=dtree->doubletree->entropy; + + if(dtree->coarse) free_image_tree(dtree->coarse); + if(dtree->horizontal) free_image_tree(dtree->horizontal); + if(dtree->vertical) free_image_tree(dtree->vertical); + if(dtree->diagonal) free_image_tree(dtree->diagonal); + + dtree->coarse=dtree->doubletree->coarse; + dtree->horizontal=dtree->doubletree->horizontal; + dtree->vertical=dtree->doubletree->vertical; + dtree->diagonal=dtree->doubletree->diagonal; + + free_image(dtree->image); + dtree->image=NULL; + free(dtree->doubletree); + dtree->doubletree=NULL; + + } + else + { + dtree->flag=1; + if(dtree->doubletree) free_image_tree(dtree->doubletree); + dtree->doubletree=NULL; + } + } + + return 1; + + error: + err_SimpleMessage(err_GetErrorMessage(Error_NotEnoughMemory)); + return 0; +} + +static save_structur(Image_tree tree,FILE *fp,int pos) +{ + int shift,next_pos,max; + + if (tree->flag) + { + fprintf(fp,"%d ",pos); + + shift=pos-(pow(4,tree->level-1)-1)*4/3-1; + max=(int) ((pow(4,tree->level)-1)*4/3); + next_pos=max+4*shift+1; + if (tree->coarse) save_structur(tree->coarse,fp,next_pos); + if (tree->horizontal) save_structur(tree->horizontal,fp,next_pos+1); + if (tree->vertical) save_structur(tree->vertical,fp,next_pos+2); + if (tree->diagonal) save_structur(tree->diagonal,fp,next_pos+3); + } + +} + +static int is_in_list(int *list,int len, int x) +{ + int i,found=0; + + for (i=0;i<len;i++) + { + if (list[i]==x) + { + found=1; + i=len; + } + } + + return found; +} + +static write_flags(Image_tree tree,int *list,int len,int pos) +{ + int shift,next_pos,max; + + if (is_in_list(list,len,pos)) + { + tree->flag=1; + + shift=pos-(pow(4,tree->level-1)-1)*4/3-1; + max=(int) ((pow(4,tree->level)-1)*4/3); + next_pos=max+4*shift+1; + + write_flags(tree->coarse,list,len,next_pos); + write_flags(tree->horizontal,list,len,next_pos+1); + write_flags(tree->vertical,list,len,next_pos+2); + write_flags(tree->diagonal,list,len,next_pos+3); + } +} + +static read_structur(Image_tree tree,FILE *fp) +{ + int e, flags[1000],len=0,i=0; + + do + { + e=fscanf(fp,"%d ",&flags[i++]); + if (e!=-1) len++; + } + while (e!=-1); + + write_flags(tree,flags,len,0); + +} + +/************************************************************************/ +/* Functionname: err_simple_message */ +/* -------------------------------------------------------------------- */ +/* Parameter: */ +/* char *: string that contains information about an */ +/* error the user should know. */ +/* -------------------------------------------------------------------- */ +/* Description: */ +/* Prints error messages for the user. */ +/************************************************************************/ + +void err_SimpleMessage(char *message) +{ + fprintf(stderr,"%s\n",message); +} + +/************************************************************************/ +/* Functionname: err_get_message */ +/* -------------------------------------------------------------------- */ +/* Return value: Errormessage for this specific error. */ +/* Parameter: */ +/* Error err: Error whose errormessage should be returned */ +/* -------------------------------------------------------------------- */ +/* Description: */ +/************************************************************************/ +char * err_GetErrorMessage(Error err) +{ + + switch (err) + { + case Error_NotImplemented: + return "Sorry, this is not implemented yet. "; + break; + + case Error_AssertionFailed: + return "Sorry, an internal assertion was violated.\n" + "This action can not be completed. :-("; + break; + + case Error_NotEnoughMemory: + return "Sorry, there is not enough memory"; + break; + + case Error_Limitation: + return "Some limitation of the program exceeded"; + break; + + /* - FILES - */ + + case Error_CantOpenFile: + return "Could not open file"; + break; + + case Error_CantCreateFile: + return "Could not create file"; + break; + + case Error_CantCloseFile: + return "Could not close file"; + break; + + case Error_InternalError: + return "Sorry, an internal error occured.\n" + "This action can not be completed. :-("; + break; + + default: + return "Sorry, but an unknown error ocurred.\n" + "This action can not be completed. :-("; + break; + + + } +}