Mercurial > hg > wm
diff Meerwald/wm_bruyn_e.c @ 0:be303a3f5ea8
import
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Sun, 12 Aug 2007 13:14:34 +0200 |
parents | |
children | f83ef905a63d |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Meerwald/wm_bruyn_e.c Sun Aug 12 13:14:34 2007 +0200 @@ -0,0 +1,551 @@ +#include "wm.h" +#include "signature.h" +#include "coord.h" +#include "gray.h" +#include "sort.h" +#include "bruyn_common.h" +#include "pgm.h" + +char *progname; + +// prints out program's parameters +void usage(void) { + fprintf(stderr, "usage: %s [-b n] [-h] [-k] [-n n] [-o file] [-pP n] [-q n] [-tT n] [-v n] -s file file\n", progname); + fprintf(stderr, "\t-b n\t\tblock size\n"); + fprintf(stderr, "\t-h\t\tprint usage\n"); + fprintf(stderr, "\t-k\t\tdisable block skipping\n"); + fprintf(stderr, "\t-n n\t\tnumber of signature bits to embed\n"); + fprintf(stderr, "\t-o file\t\toutput (watermarked) file\n"); + fprintf(stderr, "\t-p n\t\tpattern type for zone 1\n"); + fprintf(stderr, "\t-P n\t\tpattern type for zone 2\n"); + fprintf(stderr, "\t-q n\t\tsignature strength\n"); + fprintf(stderr, "\t-s file\t\tsignature to embed in input image\n"); + fprintf(stderr, "\t-t n\t\tthreshold for noise\n"); + fprintf(stderr, "\t-T n\t\tthreshold for slope\n"); + fprintf(stderr, "\t-v n\t\tverbosity level\n"); + exit(0); +} + +int main(int argc, char *argv[]) { + FILE *in = stdin; + FILE *out = stdout; + FILE *sig = NULL; + + gray** image; + gray **block; + gray **zone; + gray **category1, **category2; + gray maxval; + double *slope; + int rows, cols, colors, format; + int c; + int i, j; + int r; + int n; + int col, row; + int bwidth, bheight; + int n_block; + int skipping = 0; + + char signature_name[MAXPATHLEN]; + char input_name[MAXPATHLEN] = "(stdin)"; + char output_name[MAXPATHLEN] = "(stdout)"; + + double quality = 0.0; + double threshold_noise = 0.0; + double threshold_slope = 0.0; + int pattern1 = 0; + int pattern2 = 0; + int blocksize = 0; + int seed; + + int verbose = 0; + + struct coords *coords; + + progname = argv[0]; + + pgm_init(&argc, argv); wm_init(); + + // parse command line and set options + while ((c = getopt(argc, argv, "b:h?n:o:p:P:q:s:t:T:v:k")) != EOF) { + switch (c) { + case 'k': + skipping = 1; + break; + case 'h': + case '?': + usage(); + break; + case 'n': + nbit_signature = atoi(optarg); + if (nbit_signature <= 0 || nbit_signature > NBITSIGNATURE) { + fprintf(stderr, "%s: invalid signature length %d\n", progname, nbit_signature); + exit(1); + } + break; + case 'o': + if ((out = fopen(optarg, "wb")) == NULL) { + fprintf(stderr, "%s: unable to open output file %s\n", progname, optarg); + exit(1); + } + strcpy(output_name, optarg); + break; + case 'p': + pattern1 = atoi(optarg); + if (pattern1 <= 0 || pattern1 > NPATTERN) { + fprintf(stderr, "%s: pattern type out of range\n", progname); + exit(1); + } + break; + case 'P': + pattern2 = atoi(optarg); + if (pattern2 <= 0 || pattern2 > 3) { + fprintf(stderr, "%s: pattern type out of range\n", progname); + exit(1); + } + break; + case 'q': + quality = atof(optarg); + if (quality <= 0) { + fprintf(stderr, "%s: quality factor %f out of range\n", progname, quality); + } + break; + case 's': + if ((sig = fopen(optarg, "r")) == NULL) { + fprintf(stderr, "%s: unable to open signature file %s\n", progname, optarg); + exit(1); + } + strcpy(signature_name, optarg); + break; + case 't': + threshold_noise = atof(optarg); + if (threshold_noise <= 0) { + fprintf(stderr, "%s: noise threshold %f out of range\n", progname, threshold_noise); + } + break; + case 'T': + threshold_slope = atof(optarg); + if (threshold_slope <= 0) { + fprintf(stderr, "%s: slope threshold %f out of range\n", progname, threshold_slope); + } + break; + case 'v': + verbose = atoi(optarg); + if (verbose < 0) { + fprintf(stderr, "%s: verbosity level %d out of range\n",progname, verbose); + exit(1); + } + break; + } + } + + argc -= optind; + argv += optind; + + if (argc > 1) { + usage(); + exit(1); + } + + // open input image file or read from stdin + if (argc == 1 && *argv[0] != '-') + if ((in = fopen(argv[0], "rb")) == NULL) { + fprintf(stderr, "%s: unable to open input file %s\n", progname, argv[0]); + exit(1); + } + else + strcpy(input_name, argv[0]); + + // read signature file and set options + // command line options override signature file options + if (sig) { + char line[128]; + fgets(line, sizeof(line), sig); + if (strspn(line, "BRSG") >= 4) { + if (nbit_signature == 0) + fscanf(sig, "%d\n", &nbit_signature); + else + fscanf(sig, "%*d\n"); + if (skipping == 0) + fscanf(sig, "%d\n", &skipping); + else + fscanf(sig, "%*d\n"); + if (pattern1 == 0) + fscanf(sig, "%d\n", &pattern1); + else + fscanf(sig, "%*d\n"); + if (pattern2 == 0) + fscanf(sig, "%d\n", &pattern2); + else + fscanf(sig, "%*d\n"); + if (quality == 0.0) + fscanf(sig, "%lf\n", &quality); + else + fscanf(sig, "%*lf\n"); + if (threshold_noise == 0.0) + fscanf(sig, "%lf\n", &threshold_noise); + else + fscanf(sig, "%*lf\n"); + if (threshold_slope == 0.0) + fscanf(sig, "%lf\n", &threshold_slope); + else + fscanf(sig, "%*lf\n"); + if (blocksize == 0) + fscanf(sig, "%d\n", &blocksize); + else + fscanf(sig, "%*d\n"); + fscanf(sig, "%d\n", &seed); + srandom(seed); + n_signature = NBITSTOBYTES(nbit_signature); + fread(signature, sizeof(char), n_signature, sig); + fscanf(sig, "\n"); + } + else { + fprintf(stderr, "%s: invalid signature file %s\n", progname, signature_name); + exit(1); + } + fclose(sig); + } + else { + fprintf(stderr, "%s: signature file not specified, use -s file option\n", progname); + exit(1); + } + + if (pattern1 <= 0 || pattern2 <= 0 || pattern1 > NPATTERN || pattern2 > NPATTERN) { + fprintf(stderr, "%s: invalid pattern type specified\n"); + exit(1); + } + + // read dimensions of input image file + pgm_readpgminit(in, &cols, &rows, &maxval, &format); + + // see if we can embed all signature bits + // we want at least half of the blocks untouched + if (((rows / blocksize) * (cols / blocksize)) < nbit_signature / 2) { + fprintf(stderr, "%s: image not large enough to embed %d bits of signature\n", progname, nbit_signature); + exit(1); + } + n_block = blocksize * blocksize; + + // allocate structure to remember which blocks we already touched, + // allow plenty of room to skip over blocks + if ((coords = alloc_coords(nbit_signature * 2)) == NULL) { + fprintf(stderr, "%s: unable to allocate memory\n", progname); + exit(1); + } + + // read in input image file + image = pgm_allocarray(cols, rows); + for (row = 0; row < rows; row++) + pgm_readpgmrow(in, image[row], cols, maxval, format); + + fclose(in); + + row = 0; + col = 0; + + // allocate memory for one block + block = alloc_grays(blocksize, blocksize); + + // allocate memory for zone classification + zone = alloc_grays(blocksize, blocksize); + + // allocate memory for category classification + category1 = alloc_grays(blocksize, blocksize); + category2 = alloc_grays(blocksize, blocksize); + + // set up category classification array according to + // pattern type parameter + for (i = 0; i < blocksize; i++) + for (j = 0; j < blocksize; j++) { + category1[j][i] = lookup_pattern(pattern1, i, j); + category2[j][i] = lookup_pattern(pattern2, i, j); + } + + // allocate memory for slope calculation + slope = malloc(sizeof(double) * n_block); + + // embed all the signature bits, one by one + n = 0; + while (n < nbit_signature) { + int xb; + int yb; + int blocktype; + double smax; + int alpha, beta_minus, beta_plus; + double mean_1A, mean_1B, mean_2A, mean_2B, mean_1, mean_2; + double mean__1A, mean__1B, mean__2A, mean__2B; + int n_1A, n_1B, n_2A, n_2B, n_1, n_2; + int var_1A, var_1B, var_2A, var_2B; + int zone1_ok, zone2_ok; + + // find an unused block randomly, depending on seed + do { + xb = random() % (cols / blocksize); + yb = random() % (rows / blocksize); + } while (add_coord(coords, xb, yb) < 0); + + // copy image block + copy_grays_to_block(block, image, xb * blocksize, yb * blocksize, blocksize, blocksize); + + if (verbose > 0) + fprintf(stderr, "embedding bit #%d (= %d) in block at (%d/%d)\n", n, get_signature_bit(n), xb * blocksize, yb * blocksize); + if (verbose > 8) { + print_grays(image, xb * blocksize, yb * blocksize, blocksize, blocksize); + fprintf(stderr, "\n"); + } + + // sort luminance values in block to represent increasing function F + sort_grays(block[0], n_block); + + if (verbose > 8) { + print_grays(block, 0, 0, blocksize, blocksize); + fprintf(stderr, "\n"); + } + + // calculate slopes of F and determine smax, the max. slope of F + // the index where smax occures is called alpha + alpha = 0; + smax = 0.0; + for (i = 0; i < n_block - 1; i++) { + slope[i] = block[0][i + 1] - block[0][i]; + if (slope[i] > smax) { + smax = slope[i]; + alpha = i; + } + } + slope[n_block - 1] = 0; + + // block type classification + blocktype = BLOCKTYPE_UNKNOWN; + + if (smax < threshold_noise) { + // block has noise contrast + + blocktype = BLOCKTYPE_NOISE; + beta_minus = beta_plus = alpha; + } + else { + // block has progressive or hard contrast, let's find out... + + beta_minus = alpha - 1; + while (beta_minus >= 0 && smax - slope[beta_minus] <= threshold_slope) + beta_minus--; + + beta_plus = alpha + 1; + while (beta_plus < n_block && smax - slope[beta_plus] <= threshold_slope) + beta_plus++; + + if (beta_minus + 1 == alpha && beta_plus - 1 == alpha) + blocktype = BLOCKTYPE_HARD; + else + blocktype = BLOCKTYPE_PROGRESSIVE; + } + + if (verbose > 1) { + fprintf(stderr, "blocktype: %d\n", blocktype); + fprintf(stderr, "Smax = %lf, alpha = %d, beta- = %d, beta+ = %d\n", smax, alpha, beta_minus, beta_plus); + } + + // block pixel classification + for (i = 0; i < blocksize; i++) + for (j = 0; j < blocksize; j++) { + gray pixel = image[yb * blocksize + j][xb * blocksize + i]; + zone[j][i] = ZONE_VOID; + switch (blocktype) { + case BLOCKTYPE_PROGRESSIVE: + case BLOCKTYPE_HARD: + if (pixel < block[0][beta_minus]) + zone[j][i] = ZONE_1; + else if (pixel > block[0][beta_plus]) + zone[j][i] = ZONE_2; + break; + case BLOCKTYPE_NOISE: + if (pixel < block[0][n_block / 2]) + zone[j][i] = ZONE_1; + else if (pixel > block[0][n_block / 2]) + zone[j][i] = ZONE_2; + break; + default: + fprintf(stderr, "%s: invalid block type\n", progname); + break; + } + } + + if (verbose > 8) { + print_grays(zone, 0, 0, blocksize, blocksize); + fprintf(stderr, "\n"); + } + + // calculate mean values for zone/categories + mean_1A = mean_1B = mean_2A = mean_2B = mean_1 = mean_2 = 0.0; + n_1A = n_1B = n_2A = n_2B = n_1 = n_2 = 0; + for (i = 0; i < blocksize; i++) + for (j = 0; j < blocksize; j++) { + gray pixel = image[yb * blocksize + j][xb * blocksize + i]; + int pixel_zone = zone[j][i]; + int pixel_category = CATEGORY_VOID; + if (pixel_zone == ZONE_1) + pixel_category = category1[j][i]; + else if (pixel_zone == ZONE_2) + pixel_category = category2[j][i]; + + switch (pixel_zone | pixel_category) { + case CLASSIFICATION_1A: + n_1++; + n_1A++; + mean_1A += pixel; + mean_1 += pixel; + break; + case CLASSIFICATION_1B: + n_1++; + n_1B++; + mean_1B += pixel; + mean_1 += pixel; + break; + case CLASSIFICATION_2A: + n_2++; + n_2A++; + mean_2A += pixel; + mean_2 += pixel; + break; + case CLASSIFICATION_2B: + n_2++; + n_2B++; + mean_2B += pixel; + mean_2 += pixel; + break; + } + } + + if (n_1 && n_1A && n_1B) { + mean_1 /= (double) n_1; + mean_1A /= (double) n_1A; + mean_1B /= (double) n_1B; + zone1_ok = 1; + } + else { + mean_1 = mean_1A = mean_1B = 0.0; + zone1_ok = 0; + if (verbose > 0) + fprintf(stderr, "zone 1 unusable\n"); + } + + if (n_2 && n_2A && n_2B) { + mean_2 /= (double) n_2; + mean_2A /= (double) n_2A; + mean_2B /= (double) n_2B; + zone2_ok = 1; + } + else { + mean_2 = mean_2A = mean_2B = 0.0; + zone2_ok = 0; + if (verbose > 0) + fprintf(stderr, "zone 2 unusable\n"); + } + + if (!skipping && !zone1_ok && !zone2_ok) { + // pathological case - can it ever happen? + if (verbose > 0) + fprintf(stderr, "block skipped\n"); + continue; + } + + if (verbose > 2) { + fprintf(stderr, "m_1 = %lf, m_1A = %lf, m_1B = %lf\n", mean_1, mean_1A, mean_1B); + fprintf(stderr, "m_2 = %lf, m_2A = %lf, m_2B = %lf\n", mean_2, mean_2A, mean_2B); + } + + // calculate new mean values required by embedding rule + if (get_signature_bit(n)) { + if (zone1_ok) { + mean__1A = (mean_1 * (double) (n_1A + n_1B) + (double) n_1B * quality) / (double) (n_1A + n_1B); + mean__1B = mean__1A - quality; + } + if (zone2_ok) { + mean__2A = (mean_2 * (double) (n_2A + n_2B) + (double) n_2B * quality) / (double) (n_2A + n_2B); + mean__2B = mean__2A - quality; + } + } + else { + if (zone1_ok) { + mean__1A = (mean_1 * (double) (n_1A + n_1B) - (double) n_1B * quality) / (double) (n_1A + n_1B); + mean__1B = mean__1A + quality; + } + if (zone2_ok) { + mean__2A = (mean_2 * (double) (n_2A + n_2B) - (double) n_2B * quality) / (double) (n_2A + n_2B); + mean__2B = mean__2A + quality; + } + } + + // calculate luminance variations + if (zone1_ok) { + var_1A = rint(mean__1A - mean_1A); + var_1B = rint(mean__1B - mean_1B); + } + else var_1A = var_1B = 0; + + if (zone2_ok) { + var_2A = rint(mean__2A - mean_2A); + var_2B = rint(mean__2B - mean_2B); + } + else var_2A = var_2B = 0; + + if (verbose > 2) { + if (zone1_ok) + fprintf(stderr, "m*_1A = %lf, m*_1B = %lf\n", mean__1A, mean__1B); + if (zone2_ok) + fprintf(stderr, "m*_2A = %lf, m*_2B = %lf\n", mean__2A, mean__2B); + fprintf(stderr, "var %d %d %d %d\n", var_1A, var_1B, var_2A, var_2B); + } + + // apply luminance variations to image pixels + for (i = 0; i < blocksize; i++) + for (j = 0; j < blocksize; j++) { + int pixel = image[yb * blocksize + j][xb * blocksize + i]; + int pixel_zone = zone[j][i]; + int pixel_category = CATEGORY_VOID; + if (pixel_zone == ZONE_1) + pixel_category = category1[j][i]; + else if (pixel_zone == ZONE_2) + pixel_category = category2[j][i]; + + switch (pixel_zone | pixel_category) { + case CLASSIFICATION_1A: + pixel = GRAYRANGE(pixel + var_1A); + break; + case CLASSIFICATION_1B: + pixel = GRAYRANGE(pixel + var_1B); + break; + case CLASSIFICATION_2A: + pixel = GRAYRANGE(pixel + var_2A); + break; + case CLASSIFICATION_2B: + pixel = GRAYRANGE(pixel + var_2B); + break; + } + image[yb * blocksize + j][xb * blocksize + i] = pixel; + } + + n++; + } + + free_grays(category2); + free_grays(category1); + free_grays(zone); + free_grays(block); + + // write output image dimensions to output file + pgm_writepgminit(out, cols, rows, maxval, 0); + + // write output image + for (row = 0; row < rows; row++) + pgm_writepgmrow(out, image[row], cols, maxval, 0); + + fclose(out); + + pgm_freearray(image, rows); + + exit(0); +}