Mercurial > hg > wm
view Meerwald/gen_zhu_sig.c @ 18:3bdb67e76858
mse opt.
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 30 Jan 2009 12:46:49 +0100 |
parents | 4987db85cfae |
children |
line wrap: on
line source
#include "wm.h" char *progname; void usage(void) { fprintf(stderr, "usage: %s [-a n] [-d n] [-e n] [-f n] [-F file] [-l n] [-m n] [-n n] [-o file] [-s file] [-S n]\n\n", progname); fprintf(stderr, "\t-a n\t\talpha factor (default 0.2)\n"); fprintf(stderr, "\t-d n\t\tdeviation (default 1.0)\n"); fprintf(stderr, "\t-e n\t\twavelet filtering method (default 2)\n"); fprintf(stderr, "\t-f n\t\tfilter number (default 1)\n"); fprintf(stderr, "\t-F file\t\tfilter definition file (default 'filter.dat')\n"); fprintf(stderr, "\t-h\t\tprint usage\n"); fprintf(stderr, "\t-l n\t\tdecomposition level (default 7)\n"); fprintf(stderr, "\t-m n\t\tmean value (default 0.0)\n"); fprintf(stderr, "\t-n n\t\twatermark length (default 1000)\n"); fprintf(stderr, "\t-o file\t\toutput file\n"); fprintf(stderr, "\t-s file\t\tuse signature file's embedding information\n"); fprintf(stderr, "\t-S n\t\tseed\n"); exit(0); } int main(int argc, char *argv[]) { FILE *out = stdout; FILE *sig = NULL; char output_name[MAXPATHLEN] = "(stdout)"; char signature_name[MAXPATHLEN]; int c; int n = 1000; int s = 0; int e = 2; int f = 1; char F[MAXPATHLEN] = "filter.dat"; double a = 0.2; double m = 0.0; double d = 1.0; int l = 7; progname = argv[0]; while ((c = getopt(argc, argv, "a:d:e:f:F:h?l:m:n:o:s:S:")) != EOF) { switch (c) { case 'a': a = atof(optarg); if (a <= 0.0) { fprintf(stderr, "%s: alpha factor %f out of range\n", progname, a); exit(1); } break; case 'l': l = atoi(optarg); if (l <= 0) { fprintf(stderr, "%s: decomposition level %d out of range\n", progname, l); exit(1); } break; case 'd': d = atof(optarg); if (d <= 0.0) { fprintf(stderr, "%s: deviation %f out of range\n", progname, d); exit(1); } break; case 'e': e = atoi(optarg); if (e < 0) { fprintf(stderr, "%s: wavelet filtering method %d out of range\n", progname, e); } break; case 'f': f = atoi(optarg); if (f <= 0) { fprintf(stderr, "%s: filter number %d out of range\n", progname, f); exit(1); } break; case 'F': strcpy(F, optarg); break; case 'h': case '?': usage(); break; case 'm': m = atof(optarg); break; case 'n': n = atoi(optarg); if (n < 1 || n > 32000) { fprintf(stderr, "%s: watermark length %d out of range\n", progname, n); exit(1); } break; case 'o': if ((out = fopen(optarg, "w")) == NULL) { fprintf(stderr, "%s: unable to open output file %s\n", progname, optarg); exit(1); } strcpy(output_name, optarg); break; case 's': if ((sig = fopen(optarg, "r")) == NULL) { fprintf(stderr, "%s: unable to open signature file %s\n", progname, optarg); exit(1); } strcpy(signature_name, optarg); break; case 'S': s = atoi(optarg); break; } } argc -= optind; argv += optind; if (argc > 0) { usage(); exit(1); } if (sig) { char line[32]; fgets(line, sizeof(line), sig); if (strspn(line, "ZHSG") >= 4) { if (n == 0) fscanf(sig, "%d\n", &n); else fscanf(sig, "%*d\n"); if (a == 0.0) fscanf(sig, "%lf\n", &a); else fscanf(sig, "%*f\n"); if (l == 0) fscanf(sig, "%d\n", &l); else fscanf(sig, "%*d\n"); if (e < 0) fscanf(sig, "%d\n", &e); else fscanf(sig, "%*d\n"); if (f == 0) fscanf(sig, "%d\n", &f); else fscanf(sig, "%*d\n"); if (!strcmp(F, "")) fscanf(sig, "%[^\n\r]\n", F); else fscanf(sig, "%*[^\n\r]\n"); } else { fprintf(stderr, "%s: invalid signature file %s\n", progname, signature_name); exit(1); } } if (s) srandom(s); else srandom(time(NULL) * getpid()); fprintf(out, "ZHSG\n"); fprintf(out, "%d\n", n); fprintf(out, "%f\n", a); fprintf(out, "%d\n", l); fprintf(out, "%d\n", e); fprintf(out, "%d\n", f); fprintf(out, "%s\n", F); n >>= 1; while (n > 0) { double x; double x1, x2; /* * Algorithm P (Polar method for normal deviates), * Knuth, D., "The Art of Computer Programming", Vol. 2, 3rd Edition, p. 122 */ do { x1 = 2.0 * ((random() & RAND_MAX) / ((double) RAND_MAX + 1.0)) - 1.0; x2 = 2.0 * ((random() & RAND_MAX) / ((double) RAND_MAX + 1.0)) - 1.0; x = x1 * x1 + x2 * x2; } while (x >= 1.0); x1 *= sqrt((-2.0) * log(x) / x); x2 *= sqrt((-2.0) * log(x) / x); fprintf(out, "%f\n", m + d * x1); fprintf(out, "%f\n", m + d * x2); n--; } fclose(out); exit(0); }