Mercurial > hg > wm
view Meerwald-dir/dct.c @ 24:9f20bce6184e v0.7
move directories, support netpbm 11
author | Peter Meerwald-Stadler <pmeerw@pmeerw.net> |
---|---|
date | Fri, 20 Dec 2024 13:08:59 +0100 |
parents | Meerwald/dct.c@bd669312f068 |
children |
line wrap: on
line source
#include "wm.h" #include "dct.h" #define INVROOT2 0.7071067814 #define SWAP(A, B) {double t = A; A = B; B = t;} int N; int M; double *dct_NxN_tmp = NULL; double *dct_NxN_costable = NULL; int dct_NxN_log2N = 0; static const unsigned int JPEG_lumin_quant_table[NJPEG][NJPEG] = { {16, 11, 10, 16, 24, 40, 51, 61}, {12, 12, 14, 19, 26, 58, 60, 55}, {14, 13, 16, 24, 40, 57, 69, 56}, {14, 17, 22, 29, 51, 87, 80, 62}, {18, 22, 37, 56, 68, 109, 103, 77}, {24, 35, 55, 64, 81, 104, 113, 92}, {49, 64, 78, 87, 103, 121, 120, 101}, {72, 92, 95, 98, 112, 100, 103, 99}}; static void initcosarray() { int i,group,base,item,nitems,halfN; double factor; dct_NxN_log2N = -1; do{ dct_NxN_log2N++; if ((1<<dct_NxN_log2N)>N){ fprintf(stderr, "dct_NxN: %d not a power of 2\n", N); exit(1); } }while((1<<dct_NxN_log2N)<N); if (dct_NxN_costable) free(dct_NxN_costable); dct_NxN_costable = malloc(N * sizeof(double)); #ifdef DEBUG if(!dct_NxN_costable){ fprintf(stderr, "Unable to allocate C array\n"); exit(1); } #endif halfN=N/2; for(i=0;i<=halfN-1;i++) dct_NxN_costable[halfN+i]=4*i+1; for(group=1;group<=dct_NxN_log2N-1;group++){ base= 1<<(group-1); nitems=base; factor = 1.0*(1<<(dct_NxN_log2N-group)); for(item=1; item<=nitems;item++) dct_NxN_costable[base+item-1]=factor*dct_NxN_costable[halfN+item-1]; } for(i=1;i<=N-1;i++) dct_NxN_costable[i] = 1.0/(2.0*cos(dct_NxN_costable[i]*M_PI/(2.0*N))); } void init_dct_NxN(int width, int height) { #ifdef DEBUG if (width != height || width <= 0) { fprintf(stderr, "init_dct_NxN(): dimensions out of range\n"); exit(1); } #endif if (dct_NxN_tmp && M != height) free(dct_NxN_tmp); N = width; M = height; dct_NxN_tmp = malloc(height * sizeof(double)); #ifdef DEBUG if (!dct_NxN_tmp) { fprintf(stderr, "init_dct_NxN(): failed to allocate memory\n"); exit(1); } #endif initcosarray(); } static void bitrev(double *f, int len) { int i,j,m; if (len<=2) return; /* No action necessary if n=1 or n=2 */ j=1; for(i=1; i<=len; i++){ if(i<j) SWAP(f[j-1], f[i-1]); m = len>>1; while(j>m){ j=j-m; m=(m+1)>>1; } j=j+m; } } static void inv_sums(double *f) { int stepsize,stage,curptr,nthreads,thread,step,nsteps; for(stage=1; stage <=dct_NxN_log2N-1; stage++){ nthreads = 1<<(stage-1); stepsize = nthreads<<1; nsteps = (1<<(dct_NxN_log2N-stage)) - 1; for(thread=1; thread<=nthreads; thread++){ curptr=N-thread; for(step=1; step<=nsteps; step++){ f[curptr] += f[curptr-stepsize]; curptr -= stepsize; } } } } static void fwd_sums(double *f) { int stepsize,stage,curptr,nthreads,thread,step,nsteps; for(stage=dct_NxN_log2N-1; stage >=1; stage--){ nthreads = 1<<(stage-1); stepsize = nthreads<<1; nsteps = (1<<(dct_NxN_log2N-stage)) - 1; for(thread=1; thread<=nthreads; thread++){ curptr=nthreads +thread-1; for(step=1; step<=nsteps; step++){ f[curptr] += f[curptr+stepsize]; curptr += stepsize; } } } } static void scramble(double *f,int len){ int i,ii1,ii2; bitrev(f,len); bitrev(&f[0], len>>1); bitrev(&f[len>>1], len>>1); ii1=len-1; ii2=len>>1; for(i=0; i<(len>>2); i++){ SWAP(f[ii1], f[ii2]); ii1--; ii2++; } } static void unscramble(double *f,int len) { int i,ii1,ii2; ii1 = len-1; ii2 = len>>1; for(i=0; i<(len>>2); i++){ SWAP(f[ii1], f[ii2]); ii1--; ii2++; } bitrev(&f[0], len>>1); bitrev(&f[len>>1], len>>1); bitrev(f,len); } static void inv_butterflies(double *f) { int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; double Cfac,T; for(stage=1; stage<=dct_NxN_log2N;stage++){ ngroups=1<<(dct_NxN_log2N-stage); wingspan=1<<(stage-1); increment=wingspan<<1; for(butterfly=1; butterfly<=wingspan; butterfly++){ Cfac = dct_NxN_costable[wingspan+butterfly-1]; baseptr=0; for(group=1; group<=ngroups; group++){ ii1=baseptr+butterfly-1; ii2=ii1+wingspan; T=Cfac * f[ii2]; f[ii2]=f[ii1]-T; f[ii1]=f[ii1]+T; baseptr += increment; } } } } static void fwd_butterflies(double *f) { int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; double Cfac,T; for(stage=dct_NxN_log2N; stage>=1;stage--){ ngroups=1<<(dct_NxN_log2N-stage); wingspan=1<<(stage-1); increment=wingspan<<1; for(butterfly=1; butterfly<=wingspan; butterfly++){ Cfac = dct_NxN_costable[wingspan+butterfly-1]; baseptr=0; for(group=1; group<=ngroups; group++){ ii1=baseptr+butterfly-1; ii2=ii1+wingspan; T= f[ii2]; f[ii2]=Cfac *(f[ii1]-T); f[ii1]=f[ii1]+T; baseptr += increment; } } } } static void ifct_noscale(double *f) { f[0] *= INVROOT2; inv_sums(f); bitrev(f,N); inv_butterflies(f); unscramble(f,N); } static void fct_noscale(double *f) { scramble(f,N); fwd_butterflies(f); bitrev(f,N); fwd_sums(f); f[0] *= INVROOT2; } void fdct_NxN(gray **pixels, double **dcts) { int u,v; double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); for (u=0; u < N; u++) for (v=0; v < M; v++) dcts[u][v] = ((int) pixels[u][v] - 128); for (u=0; u<=M-1; u++){ fct_noscale(dcts[u]); } for (v=0; v<=N-1; v++){ for (u=0; u<=M-1; u++){ dct_NxN_tmp[u] = dcts[u][v]; } fct_noscale(dct_NxN_tmp); for (u=0; u<=M-1; u++){ dcts[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; } } } void idct_NxN(double **dcts, gray **pixels) { int u,v; double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); double **tmp; tmp = alloc_coeffs(N, N); for (u=0;u<N;u++) for (v=0;v<M;v++) tmp[u][v] = dcts[u][v]; for (u=0; u<=M-1; u++){ ifct_noscale(tmp[u]); } for (v=0; v<=N-1; v++){ for (u=0; u<=M-1; u++){ dct_NxN_tmp[u] = tmp[u][v]; } ifct_noscale(dct_NxN_tmp); for (u=0; u<=M-1; u++){ tmp[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; } } for (u=0;u<N;u++) for (v=0;v<M;v++) pixels[u][v] = PIXELRANGE(tmp[u][v] + 128.5); free(tmp); } void fdct_inplace_NxN(double **coeffs) { int u,v; double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); for (u=0; u<=M-1; u++) fct_noscale(coeffs[u]); for (v=0; v<=N-1; v++){ for (u=0; u<=M-1; u++) dct_NxN_tmp[u] = coeffs[u][v]; fct_noscale(dct_NxN_tmp); for (u=0; u<=M-1; u++) coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; } } void idct_inplace_NxN(double **coeffs) { int u,v; double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); for (u=0; u<=M-1; u++) ifct_noscale(coeffs[u]); for (v=0; v<=N-1; v++) { for (u=0; u<=M-1; u++) dct_NxN_tmp[u] = coeffs[u][v]; ifct_noscale(dct_NxN_tmp); for (u=0; u<=M-1; u++) coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; } } double **dct_NxM_costable_x = NULL; double **dct_NxM_costable_y = NULL; void init_dct_NxM(int cols, int rows) { int i, j; double cx = sqrt(2.0 / cols); double cy = sqrt(2.0 / rows); #ifdef DEBUG if (cols <= 0 || rows <= 0) { fprintf(stderr, "init_dct_NxM(): dimensions out of range\n"); exit(1); } #endif if (dct_NxM_costable_x && N != cols) { free_coeffs(dct_NxM_costable_x); dct_NxM_costable_x = NULL; } if (dct_NxM_costable_y && M != rows) { free_coeffs(dct_NxM_costable_y); dct_NxM_costable_y = NULL; } if (!dct_NxM_costable_x) dct_NxM_costable_x = alloc_coeffs(cols, cols); if (!dct_NxM_costable_y) dct_NxM_costable_y = alloc_coeffs(rows, rows); N = cols; M = rows; for (i = 0; i < cols; i++) { for (j = 0; j < cols; j++) { dct_NxM_costable_x[i][j] = cx * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * N)); } } for (i = 0; i < rows; i++) { for (j = 0; j < rows; j++) { dct_NxM_costable_y[i][j] = cy * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * M)); } } } void fdct_NxM(gray **pixels, double **dcts) { int x, y; int i, j; double t; double cx0 = sqrt(1.0 / N); double cy0 = sqrt(1.0 / M); t = 0.0; for (x = 0; x < N; x++) for (y = 0; y < M; y++) t += ((int) pixels[y][x] - 128); dcts[0][0] = cx0 * cy0 * t; for (i = 1; i < N; i++) { t = 0.0; for (x = 0; x < N; x++) { double s = 0.0; for (y = 0; y < M; y++) { s += ((int) pixels[y][x] - 128); } t += s * dct_NxM_costable_x[x][i]; } dcts[0][i] = cy0 * t; } for (j = 1; j < M; j++) { t = 0.0; for (y = 0; y < M; y++) { double s = 0.0; for (x = 0; x < N; x++) { s += ((int) pixels[y][x] - 128); } t += s * dct_NxM_costable_y[y][j]; } dcts[j][0] = cx0 * t; } for (i = 1; i < N; i++) { for (j = 1; j < M; j++) { t = 0.0; for (x = 0; x < N; x++) { double s = 0; for (y = 0; y < M; y++) { s += ((int) pixels[y][x] - 128) * dct_NxM_costable_y[y][j]; } t += s * dct_NxM_costable_x[x][i]; } dcts[j][i] = t; } } } void idct_NxM(double **dcts, gray **pixels) { int x, y; int i, j; double cx0 = sqrt(1.0 / N); double cy0 = sqrt(1.0 / M); double t; for (x = 0; x < N; x++) { for (y = 0; y < M; y++) { t = cx0 * cy0 * dcts[0][0]; for (i = 1; i < N; i++) t += cy0 * dcts[0][i] * dct_NxM_costable_x[x][i]; for (j = 1; j < M; j++) t += cx0 * dcts[j][0] * dct_NxM_costable_y[y][j]; for (i = 1; i < N; i++) { double s = 0.0; for (j = 1; j < M; j++) { s += dcts[j][i] * dct_NxM_costable_y[y][j]; } t += s * dct_NxM_costable_x[x][i]; } pixels[y][x] = PIXELRANGE((int) (t + 128.5)); } } } double C[NJPEG][NJPEG]; double Ct[NJPEG][NJPEG]; int Quantum[NJPEG][NJPEG]; void init_quantum_8x8(int quality) { int i; int j; for (i = 0; i < NJPEG; i++) for ( j = 0 ; j < NJPEG ; j++ ) Quantum[ i ][ j ] = 1 + ( ( 1 + i + j ) * quality ); } void init_quantum_JPEG_lumin(int quality) { int i; int j; if (quality < 50) quality = 5000 / quality; else quality = 200 - quality * 2; for (i = 0; i < NJPEG; i++) for (j = 0 ; j < NJPEG ; j++) if (quality) Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; else Quantum[i][j] = JPEG_lumin_quant_table[i][j]; } void init_quantum_JPEG_chromin(int quality) { int i; int j; if (quality < 50) quality = 5000 / quality; else quality = 200 - quality * 2; for (i = 0; i < NJPEG; i++) for (j = 0 ; j < NJPEG ; j++) if (quality) Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; else Quantum[i][j] = JPEG_lumin_quant_table[i][j]; } void quantize_8x8(double **transform) { int i; int j; for (i = 0; i < NJPEG; i++) for (j = 0; j < NJPEG; j++) transform[i][j] = ROUND(transform[i][j] / Quantum[i][j]); } void dequantize_8x8(double **transform) { int i; int j; for (i = 0; i < NJPEG; i++) for (j = 0; j < NJPEG; j++) transform[i][j] = ROUND(transform[i][j] * Quantum[i][j]); } void init_dct_8x8() { int i; int j; double pi = atan( 1.0 ) * 4.0; for ( j = 0 ; j < NJPEG ; j++ ) { C[ 0 ][ j ] = 1.0 / sqrt( (double) NJPEG ); Ct[ j ][ 0 ] = C[ 0 ][ j ]; } for ( i = 1 ; i < NJPEG ; i++ ) for ( j = 0 ; j < NJPEG ; j++ ) { C[ i ][ j ] = sqrt( 2.0 / NJPEG ) * cos( pi * ( 2 * j + 1 ) * i / ( 2.0 * NJPEG ) ); Ct[ j ][ i ] = C[ i ][ j ]; } } /* * The Forward DCT routine implements the matrix function: * * DCT = C * pixels * Ct */ void fdct_8x8(gray **input, double **output) { double temp[NJPEG][NJPEG]; double temp1; int i; int j; int k; /* MatrixMultiply( temp, input, Ct ); */ for ( i = 0 ; i < NJPEG ; i++ ) { for ( j = 0 ; j < NJPEG ; j++ ) { temp[ i ][ j ] = 0.0; for ( k = 0 ; k < NJPEG ; k++ ) temp[ i ][ j ] += ( (int) input[ i ][ k ] - 128 ) * Ct[ k ][ j ]; } } /* MatrixMultiply( output, C, temp ); */ for ( i = 0 ; i < NJPEG ; i++ ) { for ( j = 0 ; j < NJPEG ; j++ ) { temp1 = 0.0; for ( k = 0 ; k < NJPEG ; k++ ) temp1 += C[ i ][ k ] * temp[ k ][ j ]; output[ i ][ j ] = temp1; } } } void fdct_block_8x8(gray **input, int col, int row, double **output) { int i; gray *input_array[NJPEG]; for (i = 0; i < NJPEG; i++) input_array[i] = &input[row + i][col]; fdct_8x8(input_array, output); } /* * The Inverse DCT routine implements the matrix function: * * pixels = C * DCT * Ct */ void idct_8x8(double **input, gray **output) { double temp[ NJPEG ][ NJPEG ]; double temp1; int i; int j; int k; /* MatrixMultiply( temp, input, C ); */ for ( i = 0 ; i < NJPEG ; i++ ) { for ( j = 0 ; j < NJPEG ; j++ ) { temp[ i ][ j ] = 0.0; for ( k = 0 ; k < NJPEG ; k++ ) temp[ i ][ j ] += input[ i ][ k ] * C[ k ][ j ]; } } /* MatrixMultiply( output, Ct, temp ); */ for ( i = 0 ; i < NJPEG ; i++ ) { for ( j = 0 ; j < NJPEG ; j++ ) { temp1 = 0.0; for ( k = 0 ; k < NJPEG ; k++ ) temp1 += Ct[ i ][ k ] * temp[ k ][ j ]; temp1 += 128.0; output[i][j] = PIXELRANGE(ROUND(temp1)); } } } void idct_block_8x8(double **input, gray **output, int col, int row) { int i; gray *output_array[NJPEG]; for (i = 0; i < NJPEG; i++) output_array[i] = &output[row + i][col]; idct_8x8(input, output_array); } int is_middle_frequency_coeff_8x8(int coeff) { switch (coeff) { case 3: case 10: case 17: case 24: return 1; case 4: case 11: case 18: case 25: case 32: return 2; case 5: case 12: case 19: case 26: case 33: case 40: return 3; case 13: case 20: case 27: case 34: case 41: return 4; case 28: case 35: return 5; default: return 0; } }