Mercurial > hg > wm
view Meerwald-dir/wm_bruyn_e.c @ 24:9f20bce6184e v0.7
move directories, support netpbm 11
author | Peter Meerwald-Stadler <pmeerw@pmeerw.net> |
---|---|
date | Fri, 20 Dec 2024 13:08:59 +0100 |
parents | Meerwald/wm_bruyn_e.c@bd669312f068 |
children |
line wrap: on
line source
#include "wm.h" #include "signature.h" #include "coord.h" #include "gray.h" #include "sort.h" #include "bruyn_common.h" #include "netpbm/pgm.h" char *progname; // prints out program's parameters void usage(void) { fprintf(stderr, "usage: %s [-b n] [-h] [-k] [-n n] [-o file] [-pP n] [-q n] [-tT n] [-v n] -s file file\n", progname); fprintf(stderr, "\t-b n\t\tblock size\n"); fprintf(stderr, "\t-h\t\tprint usage\n"); fprintf(stderr, "\t-k\t\tdisable block skipping\n"); fprintf(stderr, "\t-n n\t\tnumber of signature bits to embed\n"); fprintf(stderr, "\t-o file\t\toutput (watermarked) file\n"); fprintf(stderr, "\t-p n\t\tpattern type for zone 1\n"); fprintf(stderr, "\t-P n\t\tpattern type for zone 2\n"); fprintf(stderr, "\t-q n\t\tsignature strength\n"); fprintf(stderr, "\t-s file\t\tsignature to embed in input image\n"); fprintf(stderr, "\t-t n\t\tthreshold for noise\n"); fprintf(stderr, "\t-T n\t\tthreshold for slope\n"); fprintf(stderr, "\t-v n\t\tverbosity level\n"); exit(0); } int main(int argc, char *argv[]) { FILE *in = stdin; FILE *out = stdout; FILE *sig = NULL; gray** image; gray **block; gray **zone; gray **category1, **category2; gray maxval; double *slope; int rows, cols, format; int c; int i, j; int n; int row; int n_block; int skipping = 0; char signature_name[MAXPATHLEN]; char input_name[MAXPATHLEN] = "(stdin)"; char output_name[MAXPATHLEN] = "(stdout)"; double quality = 0.0; double threshold_noise = 0.0; double threshold_slope = 0.0; int pattern1 = 0; int pattern2 = 0; int blocksize = 0; int seed; int verbose = 0; struct coords *coords; progname = argv[0]; pgm_init(&argc, argv); wm_init(); // parse command line and set options while ((c = getopt(argc, argv, "b:h?n:o:p:P:q:s:t:T:v:k")) != EOF) { switch (c) { case 'k': skipping = 1; break; case 'h': case '?': usage(); break; case 'n': nbit_signature = atoi(optarg); if (nbit_signature <= 0 || nbit_signature > NBITSIGNATURE) { fprintf(stderr, "%s: invalid signature length %d\n", progname, nbit_signature); exit(1); } break; case 'o': if ((out = fopen(optarg, "wb")) == NULL) { fprintf(stderr, "%s: unable to open output file %s\n", progname, optarg); exit(1); } strcpy(output_name, optarg); break; case 'p': pattern1 = atoi(optarg); if (pattern1 <= 0 || pattern1 > NPATTERN) { fprintf(stderr, "%s: pattern type out of range\n", progname); exit(1); } break; case 'P': pattern2 = atoi(optarg); if (pattern2 <= 0 || pattern2 > 3) { fprintf(stderr, "%s: pattern type out of range\n", progname); exit(1); } break; case 'q': quality = atof(optarg); if (quality <= 0) { fprintf(stderr, "%s: quality factor %f out of range\n", progname, quality); } break; case 's': if ((sig = fopen(optarg, "r")) == NULL) { fprintf(stderr, "%s: unable to open signature file %s\n", progname, optarg); exit(1); } strcpy(signature_name, optarg); break; case 't': threshold_noise = atof(optarg); if (threshold_noise <= 0) { fprintf(stderr, "%s: noise threshold %f out of range\n", progname, threshold_noise); } break; case 'T': threshold_slope = atof(optarg); if (threshold_slope <= 0) { fprintf(stderr, "%s: slope threshold %f out of range\n", progname, threshold_slope); } break; case 'v': verbose = atoi(optarg); if (verbose < 0) { fprintf(stderr, "%s: verbosity level %d out of range\n",progname, verbose); exit(1); } break; } } argc -= optind; argv += optind; if (argc > 1) { usage(); exit(1); } // open input image file or read from stdin if (argc == 1 && *argv[0] != '-') { if ((in = fopen(argv[0], "rb")) == NULL) { fprintf(stderr, "%s: unable to open input file %s\n", progname, argv[0]); exit(1); } else strcpy(input_name, argv[0]); } // read signature file and set options // command line options override signature file options if (sig) { char line[128]; fgets(line, sizeof(line), sig); if (strspn(line, "BRSG") >= 4) { if (nbit_signature == 0) fscanf(sig, "%d\n", &nbit_signature); else fscanf(sig, "%*d\n"); if (skipping == 0) fscanf(sig, "%d\n", &skipping); else fscanf(sig, "%*d\n"); if (pattern1 == 0) fscanf(sig, "%d\n", &pattern1); else fscanf(sig, "%*d\n"); if (pattern2 == 0) fscanf(sig, "%d\n", &pattern2); else fscanf(sig, "%*d\n"); if (quality == 0.0) fscanf(sig, "%lf\n", &quality); else fscanf(sig, "%*f\n"); if (threshold_noise == 0.0) fscanf(sig, "%lf\n", &threshold_noise); else fscanf(sig, "%*f\n"); if (threshold_slope == 0.0) fscanf(sig, "%lf\n", &threshold_slope); else fscanf(sig, "%*f\n"); if (blocksize == 0) fscanf(sig, "%d\n", &blocksize); else fscanf(sig, "%*d\n"); fscanf(sig, "%d\n", &seed); srandom(seed); fread(signature, sizeof(char), NBITSTOBYTES(nbit_signature), sig); fscanf(sig, "\n"); } else { fprintf(stderr, "%s: invalid signature file %s\n", progname, signature_name); exit(1); } fclose(sig); } else { fprintf(stderr, "%s: signature file not specified, use -s file option\n", progname); exit(1); } if (pattern1 <= 0 || pattern2 <= 0 || pattern1 > NPATTERN || pattern2 > NPATTERN) { fprintf(stderr, "%s: invalid pattern type specified\n", progname); exit(1); } // read dimensions of input image file pgm_readpgminit(in, &cols, &rows, &maxval, &format); // see if we can embed all signature bits // we want at least half of the blocks untouched if (((rows / blocksize) * (cols / blocksize)) < nbit_signature / 2) { fprintf(stderr, "%s: image not large enough to embed %d bits of signature\n", progname, nbit_signature); exit(1); } n_block = blocksize * blocksize; // allocate structure to remember which blocks we already touched, // allow plenty of room to skip over blocks if ((coords = alloc_coords(nbit_signature * 16)) == NULL) { fprintf(stderr, "%s: unable to allocate memory\n", progname); exit(1); } // read in input image file image = pgm_allocarray(cols, rows); for (row = 0; row < rows; row++) pgm_readpgmrow(in, image[row], cols, maxval, format); fclose(in); row = 0; // allocate memory for one block block = alloc_grays(blocksize, blocksize); // allocate memory for zone classification zone = alloc_grays(blocksize, blocksize); // allocate memory for category classification category1 = alloc_grays(blocksize, blocksize); category2 = alloc_grays(blocksize, blocksize); // set up category classification array according to // pattern type parameter for (i = 0; i < blocksize; i++) for (j = 0; j < blocksize; j++) { category1[j][i] = lookup_pattern(pattern1, i, j); category2[j][i] = lookup_pattern(pattern2, i, j); } // allocate memory for slope calculation slope = malloc(sizeof(double) * n_block); // embed all the signature bits, one by one n = 0; while (n < nbit_signature) { int xb; int yb; int blocktype; double smax; int alpha, beta_minus, beta_plus; double mean_1A, mean_1B, mean_2A, mean_2B, mean_1, mean_2; double mean__1A, mean__1B, mean__2A, mean__2B; int n_1A, n_1B, n_2A, n_2B, n_1, n_2; int var_1A, var_1B, var_2A, var_2B; int zone1_ok, zone2_ok; // find an unused block randomly, depending on seed do { xb = random() % (cols / blocksize); yb = random() % (rows / blocksize); } while (add_coord(coords, xb, yb) < 0); // copy image block copy_grays_to_block(block, image, xb * blocksize, yb * blocksize, blocksize, blocksize); if (verbose > 0) fprintf(stderr, "embedding bit #%d (= %d) in block at (%d/%d)\n", n, get_signature_bit(n), xb * blocksize, yb * blocksize); if (verbose > 8) { print_grays(image, xb * blocksize, yb * blocksize, blocksize, blocksize); fprintf(stderr, "\n"); } // sort luminance values in block to represent increasing function F sort_grays(block[0], n_block); if (verbose > 8) { print_grays(block, 0, 0, blocksize, blocksize); fprintf(stderr, "\n"); } // calculate slopes of F and determine smax, the max. slope of F // the index where smax occures is called alpha alpha = 0; smax = 0.0; for (i = 0; i < n_block - 1; i++) { slope[i] = block[0][i + 1] - block[0][i]; if (slope[i] > smax) { smax = slope[i]; alpha = i; } } slope[n_block - 1] = 0; // block type classification blocktype = BLOCKTYPE_UNKNOWN; if (smax < threshold_noise) { // block has noise contrast blocktype = BLOCKTYPE_NOISE; beta_minus = beta_plus = alpha; } else { // block has progressive or hard contrast, let's find out... beta_minus = alpha - 1; while (beta_minus >= 0 && smax - slope[beta_minus] <= threshold_slope) beta_minus--; beta_plus = alpha + 1; while (beta_plus < n_block && smax - slope[beta_plus] <= threshold_slope) beta_plus++; if (beta_minus + 1 == alpha && beta_plus - 1 == alpha) blocktype = BLOCKTYPE_HARD; else blocktype = BLOCKTYPE_PROGRESSIVE; } if (verbose > 1) { fprintf(stderr, "blocktype: %d\n", blocktype); fprintf(stderr, "Smax = %lf, alpha = %d, beta- = %d, beta+ = %d\n", smax, alpha, beta_minus, beta_plus); } // block pixel classification for (i = 0; i < blocksize; i++) for (j = 0; j < blocksize; j++) { gray pixel = image[yb * blocksize + j][xb * blocksize + i]; zone[j][i] = ZONE_VOID; switch (blocktype) { case BLOCKTYPE_PROGRESSIVE: case BLOCKTYPE_HARD: if (pixel < block[0][beta_minus]) zone[j][i] = ZONE_1; else if (pixel > block[0][beta_plus]) zone[j][i] = ZONE_2; break; case BLOCKTYPE_NOISE: if (pixel < block[0][n_block / 2]) zone[j][i] = ZONE_1; else if (pixel > block[0][n_block / 2]) zone[j][i] = ZONE_2; break; default: fprintf(stderr, "%s: invalid block type\n", progname); break; } } if (verbose > 8) { print_grays(zone, 0, 0, blocksize, blocksize); fprintf(stderr, "\n"); } // calculate mean values for zone/categories mean_1A = mean_1B = mean_2A = mean_2B = mean_1 = mean_2 = 0.0; mean__1A = mean__1B = mean__2A = mean__2B = 0.0; n_1A = n_1B = n_2A = n_2B = n_1 = n_2 = 0; for (i = 0; i < blocksize; i++) for (j = 0; j < blocksize; j++) { gray pixel = image[yb * blocksize + j][xb * blocksize + i]; int pixel_zone = zone[j][i]; int pixel_category = CATEGORY_VOID; if (pixel_zone == ZONE_1) pixel_category = category1[j][i]; else if (pixel_zone == ZONE_2) pixel_category = category2[j][i]; switch (pixel_zone | pixel_category) { case CLASSIFICATION_1A: n_1++; n_1A++; mean_1A += pixel; mean_1 += pixel; break; case CLASSIFICATION_1B: n_1++; n_1B++; mean_1B += pixel; mean_1 += pixel; break; case CLASSIFICATION_2A: n_2++; n_2A++; mean_2A += pixel; mean_2 += pixel; break; case CLASSIFICATION_2B: n_2++; n_2B++; mean_2B += pixel; mean_2 += pixel; break; } } if (n_1 && n_1A && n_1B) { mean_1 /= (double) n_1; mean_1A /= (double) n_1A; mean_1B /= (double) n_1B; zone1_ok = 1; } else { mean_1 = mean_1A = mean_1B = 0.0; zone1_ok = 0; if (verbose > 0) fprintf(stderr, "zone 1 unusable\n"); } if (n_2 && n_2A && n_2B) { mean_2 /= (double) n_2; mean_2A /= (double) n_2A; mean_2B /= (double) n_2B; zone2_ok = 1; } else { mean_2 = mean_2A = mean_2B = 0.0; zone2_ok = 0; if (verbose > 0) fprintf(stderr, "zone 2 unusable\n"); } if (!skipping && !zone1_ok && !zone2_ok) { // pathological case - can it ever happen? if (verbose > 0) fprintf(stderr, "block skipped\n"); continue; } if (verbose > 2) { fprintf(stderr, "m_1 = %lf, m_1A = %lf, m_1B = %lf\n", mean_1, mean_1A, mean_1B); fprintf(stderr, "m_2 = %lf, m_2A = %lf, m_2B = %lf\n", mean_2, mean_2A, mean_2B); } // calculate new mean values required by embedding rule if (get_signature_bit(n)) { if (zone1_ok) { mean__1A = (mean_1 * (double) (n_1A + n_1B) + (double) n_1B * quality) / (double) (n_1A + n_1B); mean__1B = mean__1A - quality; } if (zone2_ok) { mean__2A = (mean_2 * (double) (n_2A + n_2B) + (double) n_2B * quality) / (double) (n_2A + n_2B); mean__2B = mean__2A - quality; } } else { if (zone1_ok) { mean__1A = (mean_1 * (double) (n_1A + n_1B) - (double) n_1B * quality) / (double) (n_1A + n_1B); mean__1B = mean__1A + quality; } if (zone2_ok) { mean__2A = (mean_2 * (double) (n_2A + n_2B) - (double) n_2B * quality) / (double) (n_2A + n_2B); mean__2B = mean__2A + quality; } } // calculate luminance variations if (zone1_ok) { var_1A = rint(mean__1A - mean_1A); var_1B = rint(mean__1B - mean_1B); } else var_1A = var_1B = 0; if (zone2_ok) { var_2A = rint(mean__2A - mean_2A); var_2B = rint(mean__2B - mean_2B); } else var_2A = var_2B = 0; if (verbose > 2) { if (zone1_ok) fprintf(stderr, "m*_1A = %lf, m*_1B = %lf\n", mean__1A, mean__1B); if (zone2_ok) fprintf(stderr, "m*_2A = %lf, m*_2B = %lf\n", mean__2A, mean__2B); fprintf(stderr, "var %d %d %d %d\n", var_1A, var_1B, var_2A, var_2B); } // apply luminance variations to image pixels for (i = 0; i < blocksize; i++) for (j = 0; j < blocksize; j++) { int pixel = image[yb * blocksize + j][xb * blocksize + i]; int pixel_zone = zone[j][i]; int pixel_category = CATEGORY_VOID; if (pixel_zone == ZONE_1) pixel_category = category1[j][i]; else if (pixel_zone == ZONE_2) pixel_category = category2[j][i]; switch (pixel_zone | pixel_category) { case CLASSIFICATION_1A: pixel = GRAYRANGE(pixel + var_1A); break; case CLASSIFICATION_1B: pixel = GRAYRANGE(pixel + var_1B); break; case CLASSIFICATION_2A: pixel = GRAYRANGE(pixel + var_2A); break; case CLASSIFICATION_2B: pixel = GRAYRANGE(pixel + var_2B); break; } image[yb * blocksize + j][xb * blocksize + i] = pixel; } n++; } free_grays(category2); free_grays(category1); free_grays(zone); free_grays(block); // write output image dimensions to output file pgm_writepgminit(out, cols, rows, maxval, 0); // write output image for (row = 0; row < rows; row++) pgm_writepgmrow(out, image[row], cols, maxval, 0); fclose(out); pgm_freearray(image, rows); exit(0); }