Mercurial > hg > wm
view Meerwald-dir/wm_koch_e.c @ 24:9f20bce6184e v0.7
move directories, support netpbm 11
author | Peter Meerwald-Stadler <pmeerw@pmeerw.net> |
---|---|
date | Fri, 20 Dec 2024 13:08:59 +0100 |
parents | Meerwald/wm_koch_e.c@3bdb67e76858 |
children |
line wrap: on
line source
#include "wm.h" #include "dct.h" #include "signature.h" #include "coord.h" #include "gray.h" #include "netpbm/pgm.h" char *progname; double sign(double x) { if (x >= 0.0) return 1.0; else return -1.0; } double try_modif(gray **image_block, double **dcts, int c1, int c2, double w1, double w2) { int i, j; gray **altered_block; double **altered_dcts; double sum; altered_block = alloc_grays_8x8(); altered_dcts = alloc_coeffs_8x8(); for (i = 0; i < 8; i++) { memcpy(altered_dcts[i], dcts[i], sizeof(double) * 8); } // put the changed coefficients back to black altered_dcts[c1 / NJPEG][c1 % NJPEG] = w1; altered_dcts[c2 / NJPEG][c2 % NJPEG] = w2; dequantize_8x8(altered_dcts); idct_block_8x8(altered_dcts, altered_block, 0, 0); // compute MSE sum = 0.0; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { double ib = image_block[i][j]; double ab = altered_block[i][j]; sum += (ib - ab) * (ib - ab); } } sum /= 64.0; free(altered_block); free(altered_dcts); return sum; } void usage(void) { fprintf(stderr, "usage: %s [-h] [-l n] [-o file] [-q n] [-v n] -s file file\n", progname); fprintf(stderr, "\t-h\t\tprint usage\n"); fprintf(stderr, "\t-l n\t\tsignature robustness factor\n"); fprintf(stderr, "\t-o file\t\toutput (watermarked) file\n"); fprintf(stderr, "\t-q n\t\tquantization (JPEG quality) factor\n"); fprintf(stderr, "\t-s file\t\tsignature to embed in input image\n"); fprintf(stderr, "\t-v n\t\tverbosity level\n"); exit(0); } int main(int argc, char *argv[]) { FILE *in = stdin; FILE *out = stdout; FILE *sig = NULL; char signature_name[MAXPATHLEN]; char input_name[MAXPATHLEN] = "(stdin)"; char output_name[MAXPATHLEN] = "(stdout)"; int c; int n; int seed; int verbose = 0; int rows, cols, format; gray maxval; int row; int quantization = 0; double quality = 0.0; struct coords *coords; gray **image; double **dcts; gray **image_block; progname = argv[0]; pgm_init(&argc, argv); wm_init(); while ((c = getopt(argc, argv, "h?i:l:o:q:s:v:")) != EOF) { switch (c) { case 'h': case '?': usage(); break; case 'l': quality = atof(optarg); if (quality <= 0.0) { fprintf(stderr, "%s: signature strength factor %f out of range\n", progname, quality); exit(1); } break; case 'o': if ((out = fopen(optarg, "wb")) == NULL) { fprintf(stderr, "%s: unable to open output file %s\n", progname, optarg); exit(1); } strcpy(output_name, optarg); break; case 'q': quantization = atoi(optarg); if (quantization <= 0 || quantization > 100) { fprintf(stderr, "%s: quantization factor %d out of range\n", progname, quantization); exit(1); } break; case 's': if ((sig = fopen(optarg, "r")) == NULL) { fprintf(stderr, "%s: unable to open signature file %s\n", progname, optarg); exit(1); } strcpy(signature_name, optarg); break; case 'v': verbose = atoi(optarg); if (verbose < 0) { fprintf(stderr, "%s: verbosity level %d out of range\n", progname, verbose); exit(1); } break; } } argc -= optind; argv += optind; if (argc > 1) { usage(); exit(1); } if (argc == 1 && *argv[0] != '-') { if ((in = fopen(argv[0], "rb")) == NULL) { fprintf(stderr, "%s: unable to open input file %s\n", progname, argv[0]); exit(1); } else strcpy(input_name, argv[0]); } if (sig) { char line[128]; fgets(line, sizeof(line), sig); if (strspn(line, "KCSG") >= 4) { fscanf(sig, "%d\n", &nbit_signature); if (quality == 0.0) fscanf(sig, "%lf\n", &quality); else fscanf(sig, "%*f\n"); if (quantization == 0) fscanf(sig, "%d\n", &quantization); else fscanf(sig, "%*d\n"); fscanf(sig, "%d\n", &seed); n_signature = NBITSTOBYTES(nbit_signature); fread(signature, sizeof(char), n_signature, sig); fscanf(sig, "\n"); srandom(seed); } else { fprintf(stderr, "%s: invalid signature file %s\n", progname, signature_name); exit(1); } fclose(sig); } else { fprintf(stderr, "%s: signature file not specified, use -s file option\n", progname); exit(1); } pgm_readpgminit(in, &cols, &rows, &maxval, &format); if (cols % NJPEG) { fprintf(stderr, "%s: image width %d not a multiple of %d\n", progname, cols, NJPEG); exit(1); } if (rows % NJPEG) { fprintf(stderr, "%s: image height %d not a multiple of %d\n", progname, rows, NJPEG); exit(1); } if ((cols * rows) / (NJPEG * NJPEG) < nbit_signature) { fprintf(stderr, "%s: image not large enough to embed %d bits of signature\n", progname, nbit_signature); exit(1); } init_dct_8x8(); init_quantum_JPEG_lumin(quantization); dcts = alloc_coeffs_8x8(); image_block = alloc_grays_8x8(); if ((coords = alloc_coords(nbit_signature)) == NULL) { fprintf(stderr, "%s: unable to allocate memory\n", progname); exit(1); } image = pgm_allocarray(cols, rows); for (row = 0; row < rows; row++) pgm_readpgmrow(in, image[row], cols, maxval, format); fclose(in); // embedding signature bits by modifying two coefficient relationship, // one bit for each block n = 0; while (n < nbit_signature) { int xb; int yb; int c1, c2; double v1, v2; double w1, w2; double best_w1, best_w2; double diff; double mod; double try; double best_mse; int no_mse_opt = 0; // randomly select a block, check to get distinct blocks // (don't watermark a block twice) do { xb = random() % (cols / NJPEG); yb = random() % (rows / NJPEG); } while (add_coord(coords, xb, yb) < 0); // do the forward 8x8 DCT of that block fdct_block_8x8(image, xb * NJPEG, yb * NJPEG, dcts); copy_grays_to_block(image_block, image, xb*NJPEG, yb*NJPEG, NJPEG, NJPEG); // randomly select two distinct coefficients from block // only accept coefficients in the middle frequency range do { c1 = (random() % (NJPEG * NJPEG - 2)) + 1; c2 = (random() % (NJPEG * NJPEG - 2)) + 1; } while (c1 == c2 || !is_middle_frequency_coeff_8x8(c1) || !is_middle_frequency_coeff_8x8(c2)); // quantize block according to quantization quality parameter quantize_8x8(dcts); if (verbose > 0) fprintf(stderr, "%d: quantized DCT block (x %d/y %d), modifying (x %d/y %d), (x %d/y %d) for %s\n", n, xb * NJPEG, yb * NJPEG, c1 % NJPEG, c1 / NJPEG, c2 % NJPEG, c2 / NJPEG, get_signature_bit(n) ? "HIGH" : "LOW"); if (verbose > 5) print_coeffs_8x8(dcts); v1 = dcts[c1 / NJPEG][c1 % NJPEG]; v2 = dcts[c2 / NJPEG][c2 % NJPEG]; best_w1 = DBL_MAX, best_w2 = DBL_MAX; try = 0.0; best_mse = DBL_MAX; diff = fabs(v1) - fabs(v2); if (get_signature_bit(n)) mod = fabs(quality - ( fabs(v1) - fabs(v2) )); else mod = fabs(quality - (fabs(v2) - fabs(v1))); if (verbose > 2) fprintf(stderr, "%d / %d: %.2f %.2f %.2f | %d\n", xb, yb, diff, v1, v2, get_signature_bit(n)); while (try <= mod) { w1 = v1; w2 = v2; // modify coefficient's relationship to embed signature bit // using mean square error to minimize error if (get_signature_bit(n)) { if (diff < quality) { // we have to impose the relationship, does not occur naturally w1 = sign(v1)*(fabs(v1) + mod - try); w2 = sign(v2)*(fabs(v2) - try); } } else { if (diff > -quality) { // force the relationship w2 = sign(v2)*(fabs(v2) + mod - try); w1 = sign(v1)*(fabs(v1) - try); } } double mse = try_modif(image_block, dcts, c1, c2, w1, w2); if (mse < best_mse) { best_w1 = w1; best_w2 = w2; best_mse = mse; } if (verbose > 2) fprintf(stderr, "%d / %d: MSE %.2f %.2f; %.2f: %.2f %.2f\n", xb, yb, mse, best_mse, try, w1, w2); if (fabs(mse) == 1e-3) break; if (fabs(fabs(w1) - fabs(w2) + quality) > 1e-3) break; if (no_mse_opt) break; try += 0.05; } if (verbose > 1) fprintf(stderr, " %f -> %f, %f -> %f\n", v1, best_w1, v2, best_w2); // put the changed coefficients back to black dcts[c1 / NJPEG][c1 % NJPEG] = best_w1; dcts[c2 / NJPEG][c2 % NJPEG] = best_w2; // the obvious :-) dequantize_8x8(dcts); // do the inverse DCT on the modified 8x8 block idct_block_8x8(dcts, image, xb * NJPEG, yb * NJPEG); n++; } free_grays(image_block); free_coeffs(dcts); pgm_writepgminit(out, cols, rows, maxval, 0); for (row = 0; row < rows; row++) pgm_writepgmrow(out, image[row], cols, maxval, 0); fclose(out); pgm_freearray(image, rows); exit(0); }