Mercurial > hg > wm
view Meerwald/sort.c @ 13:cbecc570129d
cleanup warnings
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Mon, 30 Jun 2008 15:43:16 +0200 |
parents | be303a3f5ea8 |
children |
line wrap: on
line source
#include "sort.h" #define SWAP_GRAY(A, B) {gray t = A; A = B; B = t;} /* * quicksort-alike, from the EMX library (emx/src/lib/misc/qsort.c) * by Eberhard Mattes * * sort() is not stable, the order of equal elements is not defined */ void _sort_grays(gray *l, gray *r) { gray *i; gray *j; gray *x; redo: i = l; j = r; x = l + sizeof(gray) * (((r-l) / sizeof(gray)) / 2); do { while (i != x && *i < *x) i++; while (j != x && *j > *x) j--; if (i < j) { SWAP_GRAY(*i, *j); if (x == i) x = j; else if (x == j) x = i; } if (i <= j) { i++; if (j > l) j--; } } while (i <= j); if (j-l < r-i) { if (l < j) _sort_grays(l, j); if (i < r) { l = i; goto redo; } } else { if (i < r) _sort_grays(i, r); if (l < j) { r = j; goto redo; } } } void sort_grays(gray a[], int n) { if (n > 1) _sort_grays(&a[0], &a[n-1]); } /* * select_largest(), from the Numeric Recipes in C, Chapter 8, p. 344, * see http://www.nr.com * * returns in largest[0..m-1] the largest m elements of array[0..n-1] * with largest[0] guaranteed to be the mth largest element; largest[] is * not sorted; the array[] is not altered; this function should be used * only when m << n */ void select_largest_grays(gray array[], int n, int m, gray largest[]) { int i, j, k; if (m <= 0 || m > n/2) return; for (i = 0; i < m; i++) largest[i] = array[i]; sort_grays(largest, m); for (i = m; i < n; i++) { if (array[i] > largest[0]) { largest[0] = array[i]; j = 0; k = 1; while (k < m) { if (k < m-1 && largest[k] > largest[k+1]) k++; if (largest[j] <= largest[k]) break; SWAP_GRAY(largest[k], largest[j]); j = k; k = k << 1; } } } } #define SWAP_DOUBLE(A, B) {double t = A; A = B; B = t;} void _sort_coeffs(double *l, double *r) { double *i; double *j; double *x; redo: i = l; j = r; x = l + sizeof(double) * (((r-l) / sizeof(double)) / 2); do { while (i != x && *i < *x) i++; while (j != x && *j > *x) j--; if (i < j) { SWAP_DOUBLE(*i, *j); if (x == i) x = j; else if (x == j) x = i; } if (i <= j) { i++; if (j > l) j--; } } while (i <= j); if (j-l < r-i) { if (l < j) _sort_coeffs(l, j); if (i < r) { l = i; goto redo; } } else { if (i < r) _sort_coeffs(i, r); if (l < j) { r = j; goto redo; } } } void sort_coeffs(double a[], int n) { if (n > 1) _sort_coeffs(&a[0], &a[n-1]); } void select_largest_coeffs(double array[], int n, int m, double largest[]) { int i, j, k; if (m <= 0 || m > n/2) return; for (i = 0; i < m; i++) largest[i] = array[i]; sort_coeffs(largest, m); for (i = m; i < n; i++) { if (array[i] > largest[0]) { largest[0] = array[i]; j = 0; k = 1; while (k < m) { if (k < m-1 && largest[k] > largest[k+1]) k++; if (largest[j] <= largest[k]) break; SWAP_DOUBLE(largest[k], largest[j]); j = k; k = k << 1; } } } }