2
|
1 /*
|
|
2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
|
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
|
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
|
5 */
|
|
6
|
|
7 /* $Header: /home/kbs/jutta/src/gsm/gsm-1.0/src/RCS/preprocess.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */
|
|
8
|
|
9 #include <stdio.h>
|
|
10 #include <assert.h>
|
|
11
|
|
12 #include "private.h"
|
|
13
|
|
14 #include "gsm.h"
|
|
15 #include "proto.h"
|
|
16
|
|
17 /* 4.2.0 .. 4.2.3 PREPROCESSING SECTION
|
|
18 *
|
|
19 * After A-law to linear conversion (or directly from the
|
|
20 * Ato D converter) the following scaling is assumed for
|
|
21 * input to the RPE-LTP algorithm:
|
|
22 *
|
|
23 * in: 0.1.....................12
|
|
24 * S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
|
|
25 *
|
|
26 * Where S is the sign bit, v a valid bit, and * a "don't care" bit.
|
|
27 * The original signal is called sop[..]
|
|
28 *
|
|
29 * out: 0.1................... 12
|
|
30 * S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
|
|
31 */
|
|
32
|
|
33
|
|
34 void Gsm_Preprocess P3((S, s, so),
|
|
35 struct gsm_state *S, word * s, word * so)
|
|
36 { /* [0..159] IN/OUT */
|
|
37
|
|
38 word z1 = S->z1;
|
|
39 longword L_z2 = S->L_z2;
|
|
40 word mp = S->mp;
|
|
41
|
|
42 word s1;
|
|
43 longword L_s2;
|
|
44
|
|
45 longword L_temp;
|
|
46
|
|
47 word msp, lsp;
|
|
48 word SO;
|
|
49
|
|
50 longword ltmp; /* for ADD */
|
|
51 ulongword utmp; /* for L_ADD */
|
|
52
|
|
53 register int k = 160;
|
|
54
|
|
55 while (k--) {
|
|
56
|
|
57 /* 4.2.1 Downscaling of the input signal
|
|
58 */
|
|
59 SO = SASR(*s, 3) << 2;
|
|
60 s++;
|
|
61
|
|
62 assert(SO >= -0x4000); /* downscaled by */
|
|
63 assert(SO <= 0x3FFC); /* previous routine. */
|
|
64
|
|
65
|
|
66 /* 4.2.2 Offset compensation
|
|
67 *
|
|
68 * This part implements a high-pass filter and requires extended
|
|
69 * arithmetic precision for the recursive part of this filter.
|
|
70 * The input of this procedure is the array so[0...159] and the
|
|
71 * output the array sof[ 0...159 ].
|
|
72 */
|
|
73 /* Compute the non-recursive part
|
|
74 */
|
|
75
|
|
76 s1 = SO - z1; /* s1 = gsm_sub( *so, z1 ); */
|
|
77 z1 = SO;
|
|
78
|
|
79 assert(s1 != MIN_WORD);
|
|
80
|
|
81 /* Compute the recursive part
|
|
82 */
|
|
83 L_s2 = s1;
|
|
84 L_s2 <<= 15;
|
|
85
|
|
86 /* Execution of a 31 bv 16 bits multiplication
|
|
87 */
|
|
88
|
|
89 msp = SASR(L_z2, 15);
|
|
90 lsp = L_z2 - ((longword) msp << 15); /* gsm_L_sub(L_z2,(msp<<15)); */
|
|
91
|
|
92 L_s2 += GSM_MULT_R(lsp, 32735);
|
|
93 L_temp = (longword) msp *32735; /* GSM_L_MULT(msp,32735) >> 1; */
|
|
94 L_z2 = GSM_L_ADD(L_temp, L_s2);
|
|
95
|
|
96 /* Compute sof[k] with rounding
|
|
97 */
|
|
98 L_temp = GSM_L_ADD(L_z2, 16384);
|
|
99
|
|
100 /* 4.2.3 Preemphasis
|
|
101 */
|
|
102
|
|
103 msp = GSM_MULT_R(mp, -28180);
|
|
104 mp = SASR(L_temp, 15);
|
|
105 *so++ = GSM_ADD(mp, msp);
|
|
106 }
|
|
107
|
|
108 S->z1 = z1;
|
|
109 S->L_z2 = L_z2;
|
|
110 S->mp = mp;
|
|
111 }
|