Mercurial > hg > audiostuff
comparison intercom/ilbc/lsf.c @ 2:13be24d74cd2
import intercom-0.4.1
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 09:57:52 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:9cadc470e3da | 2:13be24d74cd2 |
---|---|
1 | |
2 /****************************************************************** | |
3 | |
4 iLBC Speech Coder ANSI-C Source Code | |
5 | |
6 lsf.c | |
7 | |
8 Copyright (C) The Internet Society (2004). | |
9 All Rights Reserved. | |
10 | |
11 ******************************************************************/ | |
12 | |
13 #include <string.h> | |
14 | |
15 | |
16 | |
17 | |
18 | |
19 #include <math.h> | |
20 | |
21 #include "iLBC_define.h" | |
22 | |
23 /*----------------------------------------------------------------* | |
24 * conversion from lpc coefficients to lsf coefficients | |
25 *---------------------------------------------------------------*/ | |
26 | |
27 void a2lsf(float *freq, /* (o) lsf coefficients */ | |
28 float *a /* (i) lpc coefficients */ | |
29 ) | |
30 { | |
31 float steps[LSF_NUMBER_OF_STEPS] = | |
32 { (float) 0.00635, (float) 0.003175, (float) 0.0015875, | |
33 (float) 0.00079375 | |
34 }; | |
35 float step; | |
36 int step_idx; | |
37 int lsp_index; | |
38 float p[LPC_HALFORDER]; | |
39 float q[LPC_HALFORDER]; | |
40 float p_pre[LPC_HALFORDER]; | |
41 float q_pre[LPC_HALFORDER]; | |
42 float old_p, old_q, *old; | |
43 float *pq_coef; | |
44 float omega, old_omega; | |
45 int i; | |
46 float hlp, hlp1, hlp2, hlp3, hlp4, hlp5; | |
47 | |
48 for (i = 0; i < LPC_HALFORDER; i++) { | |
49 p[i] = (float) -1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]); | |
50 q[i] = a[LPC_FILTERORDER - i] - a[i + 1]; | |
51 } | |
52 | |
53 p_pre[0] = (float) -1.0 - p[0]; | |
54 p_pre[1] = -p_pre[0] - p[1]; | |
55 p_pre[2] = -p_pre[1] - p[2]; | |
56 p_pre[3] = -p_pre[2] - p[3]; | |
57 p_pre[4] = -p_pre[3] - p[4]; | |
58 p_pre[4] = p_pre[4] / 2; | |
59 | |
60 q_pre[0] = (float) 1.0 - q[0]; | |
61 q_pre[1] = q_pre[0] - q[1]; | |
62 q_pre[2] = q_pre[1] - q[2]; | |
63 q_pre[3] = q_pre[2] - q[3]; | |
64 q_pre[4] = q_pre[3] - q[4]; | |
65 q_pre[4] = q_pre[4] / 2; | |
66 | |
67 omega = 0.0; | |
68 | |
69 | |
70 | |
71 | |
72 | |
73 old_omega = 0.0; | |
74 | |
75 old_p = FLOAT_MAX; | |
76 old_q = FLOAT_MAX; | |
77 | |
78 /* Here we loop through lsp_index to find all the | |
79 LPC_FILTERORDER roots for omega. */ | |
80 | |
81 for (lsp_index = 0; lsp_index < LPC_FILTERORDER; lsp_index++) { | |
82 | |
83 /* Depending on lsp_index being even or odd, we | |
84 alternatively solve the roots for the two LSP equations. */ | |
85 | |
86 | |
87 if ((lsp_index & 0x1) == 0) { | |
88 pq_coef = p_pre; | |
89 old = &old_p; | |
90 } else { | |
91 pq_coef = q_pre; | |
92 old = &old_q; | |
93 } | |
94 | |
95 /* Start with low resolution grid */ | |
96 | |
97 for (step_idx = 0, step = steps[step_idx]; | |
98 step_idx < LSF_NUMBER_OF_STEPS;) { | |
99 | |
100 /* cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) + | |
101 pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */ | |
102 | |
103 hlp = (float) cos(omega * TWO_PI); | |
104 hlp1 = (float) 2.0 *hlp + pq_coef[0]; | |
105 hlp2 = (float) 2.0 *hlp * hlp1 - (float) 1.0 + pq_coef[1]; | |
106 hlp3 = (float) 2.0 *hlp * hlp2 - hlp1 + pq_coef[2]; | |
107 hlp4 = (float) 2.0 *hlp * hlp3 - hlp2 + pq_coef[3]; | |
108 hlp5 = hlp * hlp4 - hlp3 + pq_coef[4]; | |
109 | |
110 | |
111 if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)) { | |
112 | |
113 if (step_idx == (LSF_NUMBER_OF_STEPS - 1)) { | |
114 | |
115 if (fabs(hlp5) >= fabs(*old)) { | |
116 freq[lsp_index] = omega - step; | |
117 } else { | |
118 freq[lsp_index] = omega; | |
119 } | |
120 | |
121 | |
122 | |
123 | |
124 | |
125 | |
126 | |
127 if ((*old) >= 0.0) { | |
128 *old = (float) -1.0 * FLOAT_MAX; | |
129 } else { | |
130 *old = FLOAT_MAX; | |
131 } | |
132 | |
133 omega = old_omega; | |
134 step_idx = 0; | |
135 | |
136 step_idx = LSF_NUMBER_OF_STEPS; | |
137 } else { | |
138 | |
139 if (step_idx == 0) { | |
140 old_omega = omega; | |
141 } | |
142 | |
143 step_idx++; | |
144 omega -= steps[step_idx]; | |
145 | |
146 /* Go back one grid step */ | |
147 | |
148 step = steps[step_idx]; | |
149 } | |
150 } else { | |
151 | |
152 /* increment omega until they are of different sign, | |
153 and we know there is at least one root between omega | |
154 and old_omega */ | |
155 *old = hlp5; | |
156 omega += step; | |
157 } | |
158 } | |
159 } | |
160 | |
161 for (i = 0; i < LPC_FILTERORDER; i++) { | |
162 freq[i] = freq[i] * TWO_PI; | |
163 } | |
164 } | |
165 | |
166 /*----------------------------------------------------------------* | |
167 * conversion from lsf coefficients to lpc coefficients | |
168 *---------------------------------------------------------------*/ | |
169 | |
170 void lsf2a(float *a_coef, /* (o) lpc coefficients */ | |
171 float *freq /* (i) lsf coefficients */ | |
172 ) | |
173 { | |
174 int i, j; | |
175 float hlp; | |
176 float p[LPC_HALFORDER], q[LPC_HALFORDER]; | |
177 float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER], a2[LPC_HALFORDER]; | |
178 float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER], b2[LPC_HALFORDER]; | |
179 | |
180 for (i = 0; i < LPC_FILTERORDER; i++) { | |
181 freq[i] = freq[i] * PI2; | |
182 } | |
183 | |
184 /* Check input for ill-conditioned cases. This part is not | |
185 found in the TIA standard. It involves the following 2 IF | |
186 blocks. If "freq" is judged ill-conditioned, then we first | |
187 modify freq[0] and freq[LPC_HALFORDER-1] (normally | |
188 LPC_HALFORDER = 10 for LPC applications), then we adjust | |
189 the other "freq" values slightly */ | |
190 | |
191 | |
192 if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)) { | |
193 | |
194 | |
195 if (freq[0] <= 0.0) { | |
196 freq[0] = (float) 0.022; | |
197 } | |
198 | |
199 | |
200 if (freq[LPC_FILTERORDER - 1] >= 0.5) { | |
201 freq[LPC_FILTERORDER - 1] = (float) 0.499; | |
202 } | |
203 | |
204 hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) / | |
205 (float) (LPC_FILTERORDER - 1); | |
206 | |
207 for (i = 1; i < LPC_FILTERORDER; i++) { | |
208 freq[i] = freq[i - 1] + hlp; | |
209 } | |
210 } | |
211 | |
212 memset(a1, 0, LPC_HALFORDER * sizeof(float)); | |
213 memset(a2, 0, LPC_HALFORDER * sizeof(float)); | |
214 memset(b1, 0, LPC_HALFORDER * sizeof(float)); | |
215 memset(b2, 0, LPC_HALFORDER * sizeof(float)); | |
216 memset(a, 0, (LPC_HALFORDER + 1) * sizeof(float)); | |
217 memset(b, 0, (LPC_HALFORDER + 1) * sizeof(float)); | |
218 | |
219 | |
220 | |
221 | |
222 | |
223 | |
224 /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and | |
225 cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2. | |
226 Note that for this code p[i] specifies the coefficients | |
227 used in .Q_A(z) while q[i] specifies the coefficients used | |
228 in .P_A(z) */ | |
229 | |
230 for (i = 0; i < LPC_HALFORDER; i++) { | |
231 p[i] = (float) cos(TWO_PI * freq[2 * i]); | |
232 q[i] = (float) cos(TWO_PI * freq[2 * i + 1]); | |
233 } | |
234 | |
235 a[0] = 0.25; | |
236 b[0] = 0.25; | |
237 | |
238 for (i = 0; i < LPC_HALFORDER; i++) { | |
239 a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; | |
240 b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; | |
241 a2[i] = a1[i]; | |
242 a1[i] = a[i]; | |
243 b2[i] = b1[i]; | |
244 b1[i] = b[i]; | |
245 } | |
246 | |
247 for (j = 0; j < LPC_FILTERORDER; j++) { | |
248 | |
249 if (j == 0) { | |
250 a[0] = 0.25; | |
251 b[0] = -0.25; | |
252 } else { | |
253 a[0] = b[0] = 0.0; | |
254 } | |
255 | |
256 for (i = 0; i < LPC_HALFORDER; i++) { | |
257 a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; | |
258 b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; | |
259 a2[i] = a1[i]; | |
260 a1[i] = a[i]; | |
261 b2[i] = b1[i]; | |
262 b1[i] = b[i]; | |
263 } | |
264 | |
265 a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]); | |
266 } | |
267 | |
268 a_coef[0] = 1.0; | |
269 } |