Mercurial > hg > audiostuff
comparison intercom/ilbc/lsf.c @ 2:13be24d74cd2
import intercom-0.4.1
| author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
|---|---|
| date | Fri, 25 Jun 2010 09:57:52 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:9cadc470e3da | 2:13be24d74cd2 |
|---|---|
| 1 | |
| 2 /****************************************************************** | |
| 3 | |
| 4 iLBC Speech Coder ANSI-C Source Code | |
| 5 | |
| 6 lsf.c | |
| 7 | |
| 8 Copyright (C) The Internet Society (2004). | |
| 9 All Rights Reserved. | |
| 10 | |
| 11 ******************************************************************/ | |
| 12 | |
| 13 #include <string.h> | |
| 14 | |
| 15 | |
| 16 | |
| 17 | |
| 18 | |
| 19 #include <math.h> | |
| 20 | |
| 21 #include "iLBC_define.h" | |
| 22 | |
| 23 /*----------------------------------------------------------------* | |
| 24 * conversion from lpc coefficients to lsf coefficients | |
| 25 *---------------------------------------------------------------*/ | |
| 26 | |
| 27 void a2lsf(float *freq, /* (o) lsf coefficients */ | |
| 28 float *a /* (i) lpc coefficients */ | |
| 29 ) | |
| 30 { | |
| 31 float steps[LSF_NUMBER_OF_STEPS] = | |
| 32 { (float) 0.00635, (float) 0.003175, (float) 0.0015875, | |
| 33 (float) 0.00079375 | |
| 34 }; | |
| 35 float step; | |
| 36 int step_idx; | |
| 37 int lsp_index; | |
| 38 float p[LPC_HALFORDER]; | |
| 39 float q[LPC_HALFORDER]; | |
| 40 float p_pre[LPC_HALFORDER]; | |
| 41 float q_pre[LPC_HALFORDER]; | |
| 42 float old_p, old_q, *old; | |
| 43 float *pq_coef; | |
| 44 float omega, old_omega; | |
| 45 int i; | |
| 46 float hlp, hlp1, hlp2, hlp3, hlp4, hlp5; | |
| 47 | |
| 48 for (i = 0; i < LPC_HALFORDER; i++) { | |
| 49 p[i] = (float) -1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]); | |
| 50 q[i] = a[LPC_FILTERORDER - i] - a[i + 1]; | |
| 51 } | |
| 52 | |
| 53 p_pre[0] = (float) -1.0 - p[0]; | |
| 54 p_pre[1] = -p_pre[0] - p[1]; | |
| 55 p_pre[2] = -p_pre[1] - p[2]; | |
| 56 p_pre[3] = -p_pre[2] - p[3]; | |
| 57 p_pre[4] = -p_pre[3] - p[4]; | |
| 58 p_pre[4] = p_pre[4] / 2; | |
| 59 | |
| 60 q_pre[0] = (float) 1.0 - q[0]; | |
| 61 q_pre[1] = q_pre[0] - q[1]; | |
| 62 q_pre[2] = q_pre[1] - q[2]; | |
| 63 q_pre[3] = q_pre[2] - q[3]; | |
| 64 q_pre[4] = q_pre[3] - q[4]; | |
| 65 q_pre[4] = q_pre[4] / 2; | |
| 66 | |
| 67 omega = 0.0; | |
| 68 | |
| 69 | |
| 70 | |
| 71 | |
| 72 | |
| 73 old_omega = 0.0; | |
| 74 | |
| 75 old_p = FLOAT_MAX; | |
| 76 old_q = FLOAT_MAX; | |
| 77 | |
| 78 /* Here we loop through lsp_index to find all the | |
| 79 LPC_FILTERORDER roots for omega. */ | |
| 80 | |
| 81 for (lsp_index = 0; lsp_index < LPC_FILTERORDER; lsp_index++) { | |
| 82 | |
| 83 /* Depending on lsp_index being even or odd, we | |
| 84 alternatively solve the roots for the two LSP equations. */ | |
| 85 | |
| 86 | |
| 87 if ((lsp_index & 0x1) == 0) { | |
| 88 pq_coef = p_pre; | |
| 89 old = &old_p; | |
| 90 } else { | |
| 91 pq_coef = q_pre; | |
| 92 old = &old_q; | |
| 93 } | |
| 94 | |
| 95 /* Start with low resolution grid */ | |
| 96 | |
| 97 for (step_idx = 0, step = steps[step_idx]; | |
| 98 step_idx < LSF_NUMBER_OF_STEPS;) { | |
| 99 | |
| 100 /* cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) + | |
| 101 pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */ | |
| 102 | |
| 103 hlp = (float) cos(omega * TWO_PI); | |
| 104 hlp1 = (float) 2.0 *hlp + pq_coef[0]; | |
| 105 hlp2 = (float) 2.0 *hlp * hlp1 - (float) 1.0 + pq_coef[1]; | |
| 106 hlp3 = (float) 2.0 *hlp * hlp2 - hlp1 + pq_coef[2]; | |
| 107 hlp4 = (float) 2.0 *hlp * hlp3 - hlp2 + pq_coef[3]; | |
| 108 hlp5 = hlp * hlp4 - hlp3 + pq_coef[4]; | |
| 109 | |
| 110 | |
| 111 if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)) { | |
| 112 | |
| 113 if (step_idx == (LSF_NUMBER_OF_STEPS - 1)) { | |
| 114 | |
| 115 if (fabs(hlp5) >= fabs(*old)) { | |
| 116 freq[lsp_index] = omega - step; | |
| 117 } else { | |
| 118 freq[lsp_index] = omega; | |
| 119 } | |
| 120 | |
| 121 | |
| 122 | |
| 123 | |
| 124 | |
| 125 | |
| 126 | |
| 127 if ((*old) >= 0.0) { | |
| 128 *old = (float) -1.0 * FLOAT_MAX; | |
| 129 } else { | |
| 130 *old = FLOAT_MAX; | |
| 131 } | |
| 132 | |
| 133 omega = old_omega; | |
| 134 step_idx = 0; | |
| 135 | |
| 136 step_idx = LSF_NUMBER_OF_STEPS; | |
| 137 } else { | |
| 138 | |
| 139 if (step_idx == 0) { | |
| 140 old_omega = omega; | |
| 141 } | |
| 142 | |
| 143 step_idx++; | |
| 144 omega -= steps[step_idx]; | |
| 145 | |
| 146 /* Go back one grid step */ | |
| 147 | |
| 148 step = steps[step_idx]; | |
| 149 } | |
| 150 } else { | |
| 151 | |
| 152 /* increment omega until they are of different sign, | |
| 153 and we know there is at least one root between omega | |
| 154 and old_omega */ | |
| 155 *old = hlp5; | |
| 156 omega += step; | |
| 157 } | |
| 158 } | |
| 159 } | |
| 160 | |
| 161 for (i = 0; i < LPC_FILTERORDER; i++) { | |
| 162 freq[i] = freq[i] * TWO_PI; | |
| 163 } | |
| 164 } | |
| 165 | |
| 166 /*----------------------------------------------------------------* | |
| 167 * conversion from lsf coefficients to lpc coefficients | |
| 168 *---------------------------------------------------------------*/ | |
| 169 | |
| 170 void lsf2a(float *a_coef, /* (o) lpc coefficients */ | |
| 171 float *freq /* (i) lsf coefficients */ | |
| 172 ) | |
| 173 { | |
| 174 int i, j; | |
| 175 float hlp; | |
| 176 float p[LPC_HALFORDER], q[LPC_HALFORDER]; | |
| 177 float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER], a2[LPC_HALFORDER]; | |
| 178 float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER], b2[LPC_HALFORDER]; | |
| 179 | |
| 180 for (i = 0; i < LPC_FILTERORDER; i++) { | |
| 181 freq[i] = freq[i] * PI2; | |
| 182 } | |
| 183 | |
| 184 /* Check input for ill-conditioned cases. This part is not | |
| 185 found in the TIA standard. It involves the following 2 IF | |
| 186 blocks. If "freq" is judged ill-conditioned, then we first | |
| 187 modify freq[0] and freq[LPC_HALFORDER-1] (normally | |
| 188 LPC_HALFORDER = 10 for LPC applications), then we adjust | |
| 189 the other "freq" values slightly */ | |
| 190 | |
| 191 | |
| 192 if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)) { | |
| 193 | |
| 194 | |
| 195 if (freq[0] <= 0.0) { | |
| 196 freq[0] = (float) 0.022; | |
| 197 } | |
| 198 | |
| 199 | |
| 200 if (freq[LPC_FILTERORDER - 1] >= 0.5) { | |
| 201 freq[LPC_FILTERORDER - 1] = (float) 0.499; | |
| 202 } | |
| 203 | |
| 204 hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) / | |
| 205 (float) (LPC_FILTERORDER - 1); | |
| 206 | |
| 207 for (i = 1; i < LPC_FILTERORDER; i++) { | |
| 208 freq[i] = freq[i - 1] + hlp; | |
| 209 } | |
| 210 } | |
| 211 | |
| 212 memset(a1, 0, LPC_HALFORDER * sizeof(float)); | |
| 213 memset(a2, 0, LPC_HALFORDER * sizeof(float)); | |
| 214 memset(b1, 0, LPC_HALFORDER * sizeof(float)); | |
| 215 memset(b2, 0, LPC_HALFORDER * sizeof(float)); | |
| 216 memset(a, 0, (LPC_HALFORDER + 1) * sizeof(float)); | |
| 217 memset(b, 0, (LPC_HALFORDER + 1) * sizeof(float)); | |
| 218 | |
| 219 | |
| 220 | |
| 221 | |
| 222 | |
| 223 | |
| 224 /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and | |
| 225 cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2. | |
| 226 Note that for this code p[i] specifies the coefficients | |
| 227 used in .Q_A(z) while q[i] specifies the coefficients used | |
| 228 in .P_A(z) */ | |
| 229 | |
| 230 for (i = 0; i < LPC_HALFORDER; i++) { | |
| 231 p[i] = (float) cos(TWO_PI * freq[2 * i]); | |
| 232 q[i] = (float) cos(TWO_PI * freq[2 * i + 1]); | |
| 233 } | |
| 234 | |
| 235 a[0] = 0.25; | |
| 236 b[0] = 0.25; | |
| 237 | |
| 238 for (i = 0; i < LPC_HALFORDER; i++) { | |
| 239 a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; | |
| 240 b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; | |
| 241 a2[i] = a1[i]; | |
| 242 a1[i] = a[i]; | |
| 243 b2[i] = b1[i]; | |
| 244 b1[i] = b[i]; | |
| 245 } | |
| 246 | |
| 247 for (j = 0; j < LPC_FILTERORDER; j++) { | |
| 248 | |
| 249 if (j == 0) { | |
| 250 a[0] = 0.25; | |
| 251 b[0] = -0.25; | |
| 252 } else { | |
| 253 a[0] = b[0] = 0.0; | |
| 254 } | |
| 255 | |
| 256 for (i = 0; i < LPC_HALFORDER; i++) { | |
| 257 a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; | |
| 258 b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; | |
| 259 a2[i] = a1[i]; | |
| 260 a1[i] = a[i]; | |
| 261 b2[i] = b1[i]; | |
| 262 b1[i] = b[i]; | |
| 263 } | |
| 264 | |
| 265 a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]); | |
| 266 } | |
| 267 | |
| 268 a_coef[0] = 1.0; | |
| 269 } |
