Mercurial > hg > audiostuff
diff spandsp-0.0.6pre17/src/gsm0610_long_term.c @ 4:26cd8f1ef0b1
import spandsp-0.0.6pre17
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Fri, 25 Jun 2010 15:50:58 +0200 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/spandsp-0.0.6pre17/src/gsm0610_long_term.c Fri Jun 25 15:50:58 2010 +0200 @@ -0,0 +1,436 @@ +/* + * SpanDSP - a series of DSP components for telephony + * + * gsm0610_long_term.c - GSM 06.10 full rate speech codec. + * + * Written by Steve Underwood <steveu@coppice.org> + * + * Copyright (C) 2006 Steve Underwood + * + * All rights reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License version 2.1, + * as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * This code is based on the widely used GSM 06.10 code available from + * http://kbs.cs.tu-berlin.de/~jutta/toast.html + * + * $Id: gsm0610_long_term.c,v 1.24 2009/04/20 16:36:36 steveu Exp $ + */ + +/*! \file */ + +#if defined(HAVE_CONFIG_H) +#include "config.h" +#endif + +#include <assert.h> +#include <inttypes.h> +#if defined(HAVE_TGMATH_H) +#include <tgmath.h> +#endif +#if defined(HAVE_MATH_H) +#include <math.h> +#endif +#include "floating_fudge.h" +#include <stdlib.h> + +#include "spandsp/telephony.h" +#include "spandsp/fast_convert.h" +#include "spandsp/bitstream.h" +#include "spandsp/saturated.h" +#include "spandsp/gsm0610.h" + +#include "gsm0610_local.h" + +/* Table 4.3a Decision level of the LTP gain quantizer */ +static const int16_t gsm_DLB[4] = +{ + 6554, 16384, 26214, 32767 +}; + +/* Table 4.3b Quantization levels of the LTP gain quantizer */ +static const int16_t gsm_QLB[4] = +{ + 3277, 11469, 21299, 32767 +}; + +/* 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION */ + +static int32_t gsm0610_max_cross_corr(const int16_t *wt, const int16_t *dp, int16_t *index_out) +{ + int32_t max; + int32_t index; + int32_t res; + int i; + + max = 0; + index = 40; /* index for the maximum cross-correlation */ + + for (i = 40; i <= 120; i++) + { +#if defined(__GNUC__) && defined(SPANDSP_USE_MMX) && defined(__x86_64__) + __asm__ __volatile__( + " emms;\n" + " .p2align 2;\n" + " movq (%%rdi),%%mm0;\n" + " movq (%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm0;\n" + " movq 8(%%rdi),%%mm1;\n" + " movq 8(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 16(%%rdi),%%mm1;\n" + " movq 16(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 24(%%rdi),%%mm1;\n" + " movq 24(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 32(%%rdi),%%mm1;\n" + " movq 32(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 40(%%rdi),%%mm1;\n" + " movq 40(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 48(%%rdi),%%mm1;\n" + " movq 48(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 56(%%rdi),%%mm1;\n" + " movq 56(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 64(%%rdi),%%mm1;\n" + " movq 64(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 72(%%rdi),%%mm1;\n" + " movq 72(%%rsi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq %%mm0,%%mm1;\n" + " punpckhdq %%mm0,%%mm1;\n" /* mm1 has high int32 of mm0 dup'd */ + " paddd %%mm1,%%mm0;\n" + " movd %%mm0,%[res];\n" + " emms;\n" + : [res] "=r" (res) + : "D" (wt), "S" (&dp[-i]) + ); +#elif defined(__GNUC__) && defined(SPANDSP_USE_MMX) && defined(__i386__) + __asm__ __volatile__( + " emms;\n" + " .p2align 2;\n" + " movq (%%edi),%%mm0;\n" + " movq (%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm0;\n" + " movq 8(%%edi),%%mm1;\n" + " movq 8(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 16(%%edi),%%mm1;\n" + " movq 16(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 24(%%edi),%%mm1;\n" + " movq 24(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 32(%%edi),%%mm1;\n" + " movq 32(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 40(%%edi),%%mm1;\n" + " movq 40(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 48(%%edi),%%mm1;\n" + " movq 48(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 56(%%edi),%%mm1;\n" + " movq 56(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 64(%%edi),%%mm1;\n" + " movq 64(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq 72(%%edi),%%mm1;\n" + " movq 72(%%esi),%%mm2;\n" + " pmaddwd %%mm2,%%mm1;\n" + " paddd %%mm1,%%mm0;\n" + " movq %%mm0,%%mm1;\n" + " punpckhdq %%mm0,%%mm1;\n" /* mm1 has high int32 of mm0 dup'd */ + " paddd %%mm1,%%mm0;\n" + " movd %%mm0,%[res];\n" + " emms;\n" + : [res] "=r" (res) + : "D" (wt), "S" (&dp[-i]) + ); +#else + res = (wt[0]*dp[0 - i]) + + (wt[1]*dp[1 - i]) + + (wt[2]*dp[2 - i]) + + (wt[3]*dp[3 - i]) + + (wt[4]*dp[4 - i]) + + (wt[5]*dp[5 - i]) + + (wt[6]*dp[6 - i]) + + (wt[7]*dp[7 - i]) + + (wt[8]*dp[8 - i]) + + (wt[9]*dp[9 - i]) + + (wt[10]*dp[10 - i]) + + (wt[11]*dp[11 - i]) + + (wt[12]*dp[12 - i]) + + (wt[13]*dp[13 - i]) + + (wt[14]*dp[14 - i]) + + (wt[15]*dp[15 - i]) + + (wt[16]*dp[16 - i]) + + (wt[17]*dp[17 - i]) + + (wt[18]*dp[18 - i]) + + (wt[19]*dp[19 - i]) + + (wt[20]*dp[20 - i]) + + (wt[21]*dp[21 - i]) + + (wt[22]*dp[22 - i]) + + (wt[23]*dp[23 - i]) + + (wt[24]*dp[24 - i]) + + (wt[25]*dp[25 - i]) + + (wt[26]*dp[26 - i]) + + (wt[27]*dp[27 - i]) + + (wt[28]*dp[28 - i]) + + (wt[29]*dp[29 - i]) + + (wt[30]*dp[30 - i]) + + (wt[31]*dp[31 - i]) + + (wt[32]*dp[32 - i]) + + (wt[33]*dp[33 - i]) + + (wt[34]*dp[34 - i]) + + (wt[35]*dp[35 - i]) + + (wt[36]*dp[36 - i]) + + (wt[37]*dp[37 - i]) + + (wt[38]*dp[38 - i]) + + (wt[39]*dp[39 - i]); +#endif + if (res > max) + { + max = res; + index = i; + } + /*endif*/ + } + /*endfor*/ + *index_out = index; + return max; +} +/*- End of function --------------------------------------------------------*/ + +/* This procedure computes the LTP gain (bc) and the LTP lag (Nc) + for the long term analysis filter. This is done by calculating a + maximum of the cross-correlation function between the current + sub-segment short term residual signal d[0..39] (output of + the short term analysis filter; for simplification the index + of this array begins at 0 and ends at 39 for each sub-segment of the + RPE-LTP analysis) and the previous reconstructed short term + residual signal dp[ -120 .. -1 ]. A dynamic scaling must be + performed to avoid overflow. */ + +/* This procedure exists in three versions. First, the integer + version; then, the two floating point versions (as another + function), with or without scaling. */ + +static int16_t evaluate_ltp_parameters(int16_t d[40], + int16_t *dp, // [-120..-1] IN + int16_t *Nc_out) +{ + int k; + int16_t bc; + int16_t wt[40]; + int32_t L_max; + int32_t L_power; + int16_t R; + int16_t S; + int16_t dmax; + int16_t scale; + int16_t temp; + int32_t L_temp; + + /* Search of the optimum scaling of d[0..39]. */ + dmax = 0; + for (k = 0; k < 40; k++) + { + temp = d[k]; + temp = saturated_abs16(temp); + if (temp > dmax) + dmax = temp; + /*endif*/ + } + /*endfor*/ + + if (dmax == 0) + { + temp = 0; + } + else + { + assert(dmax > 0); + temp = gsm0610_norm((int32_t) dmax << 16); + } + /*endif*/ + + if (temp > 6) + scale = 0; + else + scale = (int16_t) (6 - temp); + /*endif*/ + assert(scale >= 0); + + /* Initialization of a working array wt */ + for (k = 0; k < 40; k++) + wt[k] = d[k] >> scale; + /*endfor*/ + + /* Search for the maximum cross-correlation and coding of the LTP lag */ + L_max = gsm0610_max_cross_corr(wt, dp, Nc_out); + L_max <<= 1; + + /* Rescaling of L_max */ + assert(scale <= 100 && scale >= -100); + L_max = L_max >> (6 - scale); + + assert(*Nc_out <= 120 && *Nc_out >= 40); + + /* Compute the power of the reconstructed short term residual signal dp[..] */ + L_power = 0; + for (k = 0; k < 40; k++) + { + L_temp = dp[k - *Nc_out] >> 3; + L_power += L_temp*L_temp; + } + /*endfor*/ + L_power <<= 1; /* from L_MULT */ + + /* Normalization of L_max and L_power */ + if (L_max <= 0) + return 0; + /*endif*/ + if (L_max >= L_power) + return 3; + /*endif*/ + temp = gsm0610_norm(L_power); + + R = (int16_t) ((L_max << temp) >> 16); + S = (int16_t) ((L_power << temp) >> 16); + + /* Coding of the LTP gain */ + + /* Table 4.3a must be used to obtain the level DLB[i] for the + quantization of the LTP gain b to get the coded version bc. */ + for (bc = 0; bc <= 2; bc++) + { + if (R <= saturated_mul16(S, gsm_DLB[bc])) + break; + /*endif*/ + } + /*endfor*/ + return bc; +} +/*- End of function --------------------------------------------------------*/ + +/* 4.2.12 */ +static void long_term_analysis_filtering(int16_t bc, + int16_t Nc, + int16_t *dp, // previous d [-120..-1] IN + int16_t d[40], + int16_t dpp[40], + int16_t e[40]) +{ + int k; + + /* In this part, we have to decode the bc parameter to compute + the samples of the estimate dpp[0..39]. The decoding of bc needs the + use of table 4.3b. The long term residual signal e[0..39] + is then calculated to be fed to the RPE encoding section. */ + for (k = 0; k < 40; k++) + { + dpp[k] = gsm_mult_r(gsm_QLB[bc], dp[k - Nc]); + e[k] = saturated_sub16(d[k], dpp[k]); + } + /*endfor*/ +} +/*- End of function --------------------------------------------------------*/ + +/* 4x for 160 samples */ +void gsm0610_long_term_predictor(gsm0610_state_t *s, + int16_t d[40], + int16_t *dp, // [-120..-1] d' IN + int16_t e[40], + int16_t dpp[40], + int16_t *Nc, + int16_t *bc) +{ +#if 0 + assert(d); + assert(dp); + assert(e); + assert(dpp); + assert(Nc); + assert(bc); +#endif + + *bc = evaluate_ltp_parameters(d, dp, Nc); + long_term_analysis_filtering(*bc, *Nc, dp, d, dpp, e); +} +/*- End of function --------------------------------------------------------*/ + +/* 4.3.2 */ +void gsm0610_long_term_synthesis_filtering(gsm0610_state_t *s, + int16_t Ncr, + int16_t bcr, + int16_t erp[40], + int16_t *drp) // [-120..-1] IN, [0..40] OUT +{ + int k; + int16_t brp; + int16_t drpp; + int16_t Nr; + + /* This procedure uses the bcr and Ncr parameters to realize the + long term synthesis filter. The decoding of bcr needs + table 4.3b. */ + + /* Check the limits of Nr. */ + Nr = (Ncr < 40 || Ncr > 120) ? s->nrp : Ncr; + s->nrp = Nr; + assert (Nr >= 40 && Nr <= 120); + + /* Decode the LTP gain, bcr */ + brp = gsm_QLB[bcr]; + + /* Compute the reconstructed short term residual signal, drp[0..39] */ + assert(brp != INT16_MIN); + for (k = 0; k < 40; k++) + { + drpp = gsm_mult_r(brp, drp[k - Nr]); + drp[k] = saturated_add16(erp[k], drpp); + } + /*endfor*/ + + /* Update the reconstructed short term residual signal, drp[-1..-120] */ + for (k = 0; k < 120; k++) + drp[k - 120] = drp[k - 80]; + /*endfor*/ +} +/*- End of function --------------------------------------------------------*/ +/*- End of file ------------------------------------------------------------*/