Mercurial > hg > pymctf
annotate pymctf.py @ 4:4fc1d403ad14
fix in apply_mc_all()
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Tue, 18 Dec 2007 10:09:28 +0100 |
parents | 0e5a584fd6b2 |
children | b235e08ebd04 |
rev | line source |
---|---|
0 | 1 # MCTF following Ohm04a |
2 | |
3 import pywt | |
4 import numpy | |
5 import math | |
6 import sys | |
7 import _me | |
8 | |
2
f22cbbbb6814
enable psyco, add README
Peter Meerwald <pmeerw@cosy.sbg.ac.at>
parents:
1
diff
changeset
|
9 import psyco |
f22cbbbb6814
enable psyco, add README
Peter Meerwald <pmeerw@cosy.sbg.ac.at>
parents:
1
diff
changeset
|
10 psyco.full() |
f22cbbbb6814
enable psyco, add README
Peter Meerwald <pmeerw@cosy.sbg.ac.at>
parents:
1
diff
changeset
|
11 |
0 | 12 # type of motion vectors |
13 UNCONNECTED = -(sys.maxint) | |
14 CONNECTED = -(sys.maxint-1) | |
15 MULTIPLE_CONNECTED = -(sys.maxint-2) | |
16 | |
17 # temporal low-pass frame position | |
18 LEFT = -1 | |
19 MIDDLE = 0 | |
20 RIGHT = 1 | |
21 | |
3 | 22 def apply_mc(a, mvf=None, bs=8): |
23 mc_a = numpy.empty(a.shape, numpy.float) | |
24 for r in xrange(0, a.shape[0], bs): | |
25 for c in xrange(0, a.shape[1], bs): | |
26 mv = mvf[r,c] | |
27 rm, cm = r+mv[0],c+mv[1] | |
28 mc_a[r:r+bs,c:c+bs] = a[rm:rm+bs,cm:cm+bs] | |
29 return mc_a | |
30 | |
31 def apply_mc_all(w, mvfs, bs=8, tlp=MIDDLE): | |
32 ws_in = [w] | |
33 | |
34 take = 1 | |
35 while take <= len(mvfs): | |
36 ws_out = [] | |
37 | |
38 if tlp == RIGHT: left = 0; mid = take; right = 0 | |
39 elif tlp == LEFT: left = 0; mid = 0; right = take | |
40 else: left = 0; mid = max(take/2, 1); right = take | |
41 | |
42 for i in xrange(left, mid): | |
43 ws_out.append(apply_mc(ws_in[i], mvfs[i], bs)) | |
44 ws_out.append(ws_in[i]) | |
45 for i in xrange(mid, right): | |
46 ws_out.append(ws_in[i]) | |
4 | 47 ws_out.append(apply_mc(ws_in[i], mvfs[i], bs)) |
3 | 48 |
49 ws_in = ws_out | |
50 del mvfs[:take] | |
51 | |
52 take *= 2 | |
53 | |
54 return ws_in | |
55 | |
0 | 56 def me(a, refblock, rc, cc, sr): |
57 min_sad = sys.maxint | |
58 min_r, min_c = 0, 0 | |
59 bs = refblock.shape[0] | |
60 for rs in xrange(max(0,rc-sr),min(a.shape[0]-bs,rc+sr)+1): | |
61 for cs in xrange(max(0,cc-sr),min(cc+sr,a.shape[1]-bs)+1): | |
62 sad = numpy.sum(numpy.abs(refblock - a[rs:rs+bs, cs:cs+bs])) | |
63 if sad < min_sad: | |
64 # found new local block SAD minimum, store motion vector | |
65 min_r, min_c, min_sad = rs, cs, sad | |
66 return min_r, min_c, min_sad | |
67 | |
68 def motion_estimation(a, b, blocksize=8, searchrange=8, hlevel=2): | |
69 ''' | |
70 Hierarchical motion estimation from frame a to frame b. | |
71 Parameters are blocksize, searchrange and search hierarchy level. | |
72 Precision is full pixel only. | |
73 Returns the sum-of-absolute-differences (SAD) and the motion | |
74 vector field (MVF). | |
75 ''' | |
76 | |
77 mvf = numpy.zeros((b.shape[0], b.shape[1], 3), numpy.int) | |
78 mvf[:,:,2] = UNCONNECTED | |
79 | |
80 ref = numpy.asarray(b, numpy.float) | |
81 | |
82 # downsample frame data using Haar wavelet | |
83 w = pywt.Wavelet('haar') | |
84 ha = pywt.wavedec2(a, w, level=hlevel) | |
85 href = pywt.wavedec2(ref, w, level=hlevel) | |
86 | |
87 # grows by 2 for every level | |
88 hbs = blocksize//2**hlevel | |
89 hsr = searchrange//2**hlevel | |
90 | |
91 while True: | |
92 total_sad = 0.0 | |
93 _2hlevel = 2**hlevel | |
94 for r in xrange(0, href[0].shape[0], hbs): | |
95 for c in xrange(0, href[0].shape[1], hbs): | |
96 rm = r * _2hlevel | |
97 cm = c * _2hlevel | |
98 | |
99 # set center of new search of previously found vector at higher level | |
100 if mvf[rm,cm,2] >= 0: rc, cc = mvf[rm,cm,0]*2 + r, mvf[rm,cm,1]*2 + c | |
101 else: rc, cc = r, c | |
102 rs, cs, sad = _me.me(ha[0], href[0][r:r+hbs,c:c+hbs], rc, cc, hsr) | |
103 mvf[rm:rm+blocksize,cm:cm+blocksize,:] = rs - r, cs - c, int(sad) | |
104 total_sad += sad | |
105 | |
106 if hlevel == 0: break | |
107 | |
108 # upsample frame data using Haar wavelet | |
109 ha = [pywt.waverec2(ha[:2], w)] + ha[2:] | |
110 href = [pywt.waverec2(href[:2], w)] + href[2:] | |
111 hbs *= 2 | |
112 hlevel -= 1 | |
113 | |
114 return total_sad, mvf | |
115 | |
116 def ft_mvf(a, b, mvf, imvf, bs=8): | |
117 ''' | |
118 Motion-compensated temporal decomposition between frame a and b | |
119 using Haar wavelet applying a given forward and inverse motion field. | |
120 ''' | |
121 | |
122 H = numpy.empty(a.shape, numpy.float) | |
123 L = numpy.empty(a.shape, numpy.float) | |
124 | |
125 i0 = numpy.indices((bs,bs))[0] | |
126 i1 = numpy.indices((bs,bs))[1] | |
127 | |
128 for r in xrange(0, a.shape[0], bs): | |
129 for c in xrange(0, a.shape[1], bs): | |
130 rm = mvf[r, c, 0] + r | |
131 cm = mvf[r, c, 1] + c | |
132 H[r:r+bs, c:c+bs] = numpy.asarray(a[r:r+bs,c:c+bs], numpy.float) - b[rm:rm+bs,cm:cm+bs] | |
133 rm = r + imvf[r:r+bs,c:c+bs,0] + i0 | |
134 cm = c + imvf[r:r+bs,c:c+bs,1] + i1 | |
135 _a = a[rm, cm] | |
136 L[r:r+bs, c:c+bs] = numpy.where( \ | |
137 imvf[r:r+bs, c:c+bs, 2] == UNCONNECTED, \ | |
138 numpy.asarray(b[r:r+bs, c:c+bs], numpy.float), \ | |
139 0.5 * (numpy.asarray(b[r:r+bs, c:c+bs], numpy.float) + _a)) | |
140 | |
141 return L, H | |
142 | |
143 def it_mvf(L, H, mvf, imvf, bs=8): | |
144 ''' | |
145 Reconstruction of two frames a and b from temporal low- and high-pass subband | |
146 using Haar wavelet and applying the given forward and inverse motion field. | |
147 ''' | |
148 | |
149 i0 = numpy.indices((bs,bs))[0] | |
150 i1 = numpy.indices((bs,bs))[1] | |
151 | |
152 b = numpy.empty(L.shape, numpy.float) | |
153 for r in xrange(0, L.shape[0], bs): | |
154 for c in xrange(0, L.shape[1], bs): | |
155 _L = L[r:r+bs,c:c+bs] | |
156 rm = r + imvf[r:r+bs,c:c+bs,0] + i0 | |
157 cm = c + imvf[r:r+bs,c:c+bs,1] + i1 | |
158 _H = H[rm, cm] | |
159 b[r:r+bs,c:c+bs] = numpy.where( \ | |
160 imvf[r:r+bs,c:c+bs,2] == UNCONNECTED, \ | |
161 _L, \ | |
162 _L - 0.5 * _H) | |
163 | |
164 a = numpy.empty(L.shape, numpy.float) | |
165 for r in xrange(0, L.shape[0], bs): | |
166 for c in xrange(0, L.shape[1], bs): | |
167 rm = mvf[r, c, 0] + r | |
168 cm = mvf[r, c, 1] + c | |
169 _H = H[r:r+bs,c:c+bs] | |
170 a[r:r+bs, c:c+bs] = numpy.where( \ | |
171 mvf[r:r+bs,c:c+bs,2] == MULTIPLE_CONNECTED, \ | |
172 b[rm:rm+bs,cm:cm+bs] + _H, \ | |
173 L[rm:rm+bs,cm:cm+bs] + 0.5 * _H) | |
174 | |
175 return a, b | |
176 | |
177 def _show_mv_dist(mvf, idx=0, level=0, sr=8, fname='mv_dist'): | |
1
b67c5ec1a9f0
import only needed modules
Peter Meerwald <pmeerw@cosy.sbg.ac.at>
parents:
0
diff
changeset
|
178 import Image, ImageDraw |
0 | 179 im = Image.new('RGB', (mvf.shape[1], mvf.shape[0])) |
180 d = ImageDraw.Draw(im) | |
181 | |
182 for r in xrange(mvf.shape[0]): | |
183 for c in xrange(mvf.shape[1]): | |
184 mv = mvf[r][c] | |
185 | |
186 if sr > 0: w = int(math.sqrt(mv[0]**2 + mv[1]**2)*255/(sr*math.sqrt(2.0))) | |
187 else: w = 0 | |
188 | |
189 if mv[2] >= 0 or mv[2] == CONNECTED: color = (0, w, 0) | |
190 elif mv[2] == UNCONNECTED: color = (255, 0, 0) | |
191 elif mv[2] == MULTIPLE_CONNECTED: color = (0, 0, w) | |
192 | |
193 d.point((c, r), fill=color) | |
194 | |
195 del d | |
196 im.save('%s-%02d-%04d.png' % (fname, level, idx), 'PNG') | |
197 del im | |
198 | |
199 def show_mvf(mvf, imvf, idx=0, level=0, bs=8, sr=8): | |
200 ''' | |
201 Visualize the motion field as .png and output motion vectors to .txt. | |
202 ''' | |
203 | |
204 im = Image.new('RGB', (mvf.shape[1]*2, mvf.shape[0]*2)) | |
205 d = ImageDraw.Draw(im) | |
206 f = open('mv-%02d-%04d.txt' % (level, idx), 'wt') | |
207 sad = mvf[:,:,2].ravel() | |
208 sad_min = numpy.min(numpy.where(sad < 0.0, 0, sad)) | |
209 sad_max = numpy.max(sad) | |
210 for r in xrange(0,mvf.shape[0],bs): | |
211 for c in xrange(0,mvf.shape[1],bs): | |
212 mv = mvf[r][c] | |
213 print >>f, '(%d %d)' % (mv[1], mv[0]), | |
214 | |
215 # fill block according to SAD | |
216 if sad_max > 0 and mv[2] > 0: | |
217 d.rectangle([(c*2,r*2),(c*2+bs*2,r*2+bs*2)], fill=((mv[2]-sad_min)*255/sad_max,0,0)) | |
218 | |
219 # draw motion vector | |
220 if sr > 0: w = int(math.sqrt(mv[0]**2 + mv[1]**2)/(sr*math.sqrt(2.0))) | |
221 else: w = 0 | |
222 | |
223 d.line([ \ | |
224 (c*2+bs, r*2+bs), \ | |
225 (c*2+bs+mv[1]*2, r*2+bs+mv[0]*2)], \ | |
226 fill=(0,int(32+(255-32)*w),0)) | |
227 d.point((c*2+bs, r*2+bs), fill=(255,255,255)) | |
228 | |
229 print >>f | |
230 print >>f | |
231 | |
232 f.close() | |
233 del d | |
234 | |
235 im.save('mv-%02d-%04d.png' % (level, idx), 'PNG') | |
236 del im | |
237 | |
238 _show_mv_dist(mvf, idx, level, sr, 'mvf_dist') | |
239 _show_mv_dist(imvf, idx, level, sr, 'mvi_dist') | |
240 | |
241 | |
242 def inverse_mvf(mvf, bs=8): | |
243 ''' | |
244 Compute the inverse of the motion field. | |
245 ''' | |
246 | |
247 imvf = numpy.zeros((mvf.shape[0], mvf.shape[1], 3), numpy.int) | |
248 imvf[:,:,2] = UNCONNECTED | |
249 for r in xrange(0, mvf.shape[0], bs): | |
250 for c in xrange(0, mvf.shape[1], bs): | |
251 rm = mvf[r,c,0] + r | |
252 cm = mvf[r,c,1] + c | |
253 | |
254 blockmvf = mvf[r:r+bs,c:c+bs] | |
255 blockimvf = imvf[rm:rm+bs,cm:cm+bs] | |
256 | |
257 # mark multiple connected in forward motion field if pixel already connected | |
258 numpy.place(blockmvf[:,:,2], blockimvf[:,:,2] > UNCONNECTED, MULTIPLE_CONNECTED) | |
259 | |
260 # invert motion vector and store in inverse motion field, mark pixel as connected | |
261 unconnected = blockimvf[:,:,2] == UNCONNECTED | |
262 numpy.place(blockimvf[:,:,0], unconnected, -mvf[r,c,0]) | |
263 numpy.place(blockimvf[:,:,1], unconnected, -mvf[r,c,1]) | |
264 numpy.place(blockimvf[:,:,2], unconnected, CONNECTED) | |
265 | |
266 return mvf, imvf | |
267 | |
3 | 268 def decompose_sequence(seq, Hs=[], MVFs=[], bs=8, sr=8, hlevel=2, tlp=MIDDLE): |
0 | 269 ''' |
270 Recursively decompose frame sequence using motion-compensated temporal filtering | |
271 employing the parameters blocksize, searchrange and hierarchy level for motion estimation. | |
272 | |
273 Output is [L], [H0, H1, H1, H2, H2, H2, H2], [MVF0, MVF1, MVF1, MVF2, MVF2, MVF2, MVF2] for | |
274 a sequence of length 8. | |
275 | |
276 The tlp argument allows to move the temporal low-pass frame to the left, | |
277 middle or right. | |
278 ''' | |
279 Ls = [] | |
280 | |
281 if len(seq) == 1: | |
282 return seq, Hs, MVFs | |
283 | |
284 if tlp == RIGHT: left = 0; mid = len(seq); right = 0 | |
285 elif tlp == LEFT: left = 0; mid = 0; right = len(seq) | |
286 else: left = 0; mid = max(len(seq)/2, 2); right = len(seq) | |
287 | |
288 for i in xrange(left, mid, 2): | |
289 sad, mvf = motion_estimation(seq[i+1], seq[i], bs, sr, hlevel) | |
290 mvf, imvf = inverse_mvf(mvf, bs) | |
291 MVFs.insert(i//2, mvf) | |
292 L, H = ft_mvf(seq[i], seq[i+1], mvf, imvf, bs) | |
293 Ls.append(L) | |
294 Hs.insert(i//2, H) | |
295 | |
296 for i in xrange(mid, right, 2): | |
297 sad, mvf = motion_estimation(seq[i], seq[i+1], bs, sr, hlevel) | |
298 mvf, imvf = inverse_mvf(mvf, bs) | |
299 MVFs.insert(i//2, mvf) | |
300 L, H = ft_mvf(seq[i+1], seq[i], mvf, imvf, bs) | |
301 Ls.append(L) | |
302 Hs.insert(i//2, H) | |
303 | |
3 | 304 return decompose_sequence(Ls, Hs, MVFs, bs, sr, hlevel, tlp) |
305 | |
306 def decompose_sequence_using_mvf(seq, Hs=[], MVFs=[], bs=8, tlp=MIDDLE): | |
307 ''' | |
308 Recursively decompose frame sequence using motion-compensated temporal filtering | |
309 employing the given motion vector field. | |
310 | |
311 Output is [L], [H0, H1, H1, H2, H2, H2, H2] for | |
312 a sequence of length 8. | |
313 | |
314 The tlp argument allows to move the temporal low-pass frame to the left, | |
315 middle or right. | |
316 ''' | |
317 Ls = [] | |
318 | |
319 if len(seq) == 1: | |
320 return seq, Hs | |
321 | |
322 if tlp == RIGHT: left = 0; mid = len(seq); right = 0 | |
323 elif tlp == LEFT: left = 0; mid = 0; right = len(seq) | |
324 else: left = 0; mid = max(len(seq)/2, 2); right = len(seq) | |
325 | |
326 for i in xrange(left, mid, 2): | |
327 mvf = MVFs[(-len(seq)+i)/2] | |
328 mvf, imvf = inverse_mvf(mvf, bs) | |
329 L, H = ft_mvf(seq[i], seq[i+1], mvf, imvf, bs) | |
330 Ls.append(L) | |
331 Hs.insert(i//2, H) | |
332 | |
333 for i in xrange(mid, right, 2): | |
334 mvf = MVFs[(-len(seq)+i)/2 ] | |
335 mvf, imvf = inverse_mvf(mvf, bs) | |
336 L, H = ft_mvf(seq[i+1], seq[i], mvf, imvf, bs) | |
337 Ls.append(L) | |
338 Hs.insert(i//2, H) | |
339 | |
340 del MVFs[-len(seq)/2:] | |
341 | |
342 return decompose_sequence_using_mvf(Ls, Hs, MVFs, bs, tlp) | |
343 | |
0 | 344 |
345 def reconstruct_sequence(seq, Hs, MVFs, bs=8, tlp=MIDDLE): | |
346 ''' | |
347 Recursively reconstruct a frame sequence from temporal low- and high-pass subbands | |
348 and motion fields. | |
349 ''' | |
350 | |
351 Ls = [] | |
352 | |
353 if len(Hs) == 0: | |
354 return seq | |
355 | |
356 if tlp == RIGHT: left = 0; mid = len(seq); right = 0 | |
357 elif tlp == LEFT: left = 0; mid = 0; right = len(seq) | |
358 else: left = 0; mid = max(len(seq)/2, 1); right = len(seq) | |
359 | |
360 for i in xrange(0, mid): | |
361 mvf = MVFs[0] | |
362 mvf, imvf = inverse_mvf(mvf, bs) | |
363 a, b = it_mvf(seq[i], Hs[0], mvf, imvf, bs) | |
364 Ls += [a] + [b] | |
365 del Hs[0] | |
366 del MVFs[0] | |
367 | |
368 for i in xrange(mid, right): | |
369 mvf = MVFs[0] | |
370 mvf, imvf = inverse_mvf(mvf, bs) | |
371 a, b = it_mvf(seq[i], Hs[0], mvf, imvf, bs) | |
372 Ls += [b] + [a] | |
373 del Hs[0] | |
374 del MVFs[0] | |
375 | |
376 return reconstruct_sequence(Ls, Hs, MVFs, bs, tlp) | |
377 |