Mercurial > hg > wm
comparison Meerwald-dir/dct.c @ 24:9f20bce6184e v0.7
move directories, support netpbm 11
author | Peter Meerwald-Stadler <pmeerw@pmeerw.net> |
---|---|
date | Fri, 20 Dec 2024 13:08:59 +0100 |
parents | Meerwald/dct.c@bd669312f068 |
children |
comparison
equal
deleted
inserted
replaced
23:71dd4b96221b | 24:9f20bce6184e |
---|---|
1 #include "wm.h" | |
2 #include "dct.h" | |
3 | |
4 #define INVROOT2 0.7071067814 | |
5 #define SWAP(A, B) {double t = A; A = B; B = t;} | |
6 | |
7 int N; | |
8 int M; | |
9 | |
10 double *dct_NxN_tmp = NULL; | |
11 double *dct_NxN_costable = NULL; | |
12 int dct_NxN_log2N = 0; | |
13 | |
14 static const unsigned int JPEG_lumin_quant_table[NJPEG][NJPEG] = { | |
15 {16, 11, 10, 16, 24, 40, 51, 61}, | |
16 {12, 12, 14, 19, 26, 58, 60, 55}, | |
17 {14, 13, 16, 24, 40, 57, 69, 56}, | |
18 {14, 17, 22, 29, 51, 87, 80, 62}, | |
19 {18, 22, 37, 56, 68, 109, 103, 77}, | |
20 {24, 35, 55, 64, 81, 104, 113, 92}, | |
21 {49, 64, 78, 87, 103, 121, 120, 101}, | |
22 {72, 92, 95, 98, 112, 100, 103, 99}}; | |
23 | |
24 static void initcosarray() | |
25 { | |
26 int i,group,base,item,nitems,halfN; | |
27 double factor; | |
28 | |
29 dct_NxN_log2N = -1; | |
30 do{ | |
31 dct_NxN_log2N++; | |
32 if ((1<<dct_NxN_log2N)>N){ | |
33 fprintf(stderr, "dct_NxN: %d not a power of 2\n", N); | |
34 exit(1); | |
35 } | |
36 }while((1<<dct_NxN_log2N)<N); | |
37 if (dct_NxN_costable) free(dct_NxN_costable); | |
38 dct_NxN_costable = malloc(N * sizeof(double)); | |
39 #ifdef DEBUG | |
40 if(!dct_NxN_costable){ | |
41 fprintf(stderr, "Unable to allocate C array\n"); | |
42 exit(1); | |
43 } | |
44 #endif | |
45 halfN=N/2; | |
46 for(i=0;i<=halfN-1;i++) dct_NxN_costable[halfN+i]=4*i+1; | |
47 for(group=1;group<=dct_NxN_log2N-1;group++){ | |
48 base= 1<<(group-1); | |
49 nitems=base; | |
50 factor = 1.0*(1<<(dct_NxN_log2N-group)); | |
51 for(item=1; item<=nitems;item++) dct_NxN_costable[base+item-1]=factor*dct_NxN_costable[halfN+item-1]; | |
52 } | |
53 | |
54 for(i=1;i<=N-1;i++) dct_NxN_costable[i] = 1.0/(2.0*cos(dct_NxN_costable[i]*M_PI/(2.0*N))); | |
55 } | |
56 | |
57 void init_dct_NxN(int width, int height) { | |
58 #ifdef DEBUG | |
59 if (width != height || width <= 0) { | |
60 fprintf(stderr, "init_dct_NxN(): dimensions out of range\n"); | |
61 exit(1); | |
62 } | |
63 #endif | |
64 | |
65 if (dct_NxN_tmp && M != height) | |
66 free(dct_NxN_tmp); | |
67 | |
68 N = width; | |
69 M = height; | |
70 | |
71 dct_NxN_tmp = malloc(height * sizeof(double)); | |
72 #ifdef DEBUG | |
73 if (!dct_NxN_tmp) { | |
74 fprintf(stderr, "init_dct_NxN(): failed to allocate memory\n"); | |
75 exit(1); | |
76 } | |
77 #endif | |
78 | |
79 initcosarray(); | |
80 } | |
81 | |
82 static void bitrev(double *f, int len) | |
83 { | |
84 int i,j,m; | |
85 | |
86 if (len<=2) return; /* No action necessary if n=1 or n=2 */ | |
87 j=1; | |
88 for(i=1; i<=len; i++){ | |
89 if(i<j) | |
90 SWAP(f[j-1], f[i-1]); | |
91 m = len>>1; | |
92 while(j>m){ | |
93 j=j-m; | |
94 m=(m+1)>>1; | |
95 } | |
96 j=j+m; | |
97 } | |
98 } | |
99 | |
100 static void inv_sums(double *f) | |
101 { | |
102 int stepsize,stage,curptr,nthreads,thread,step,nsteps; | |
103 | |
104 for(stage=1; stage <=dct_NxN_log2N-1; stage++){ | |
105 nthreads = 1<<(stage-1); | |
106 stepsize = nthreads<<1; | |
107 nsteps = (1<<(dct_NxN_log2N-stage)) - 1; | |
108 for(thread=1; thread<=nthreads; thread++){ | |
109 curptr=N-thread; | |
110 for(step=1; step<=nsteps; step++){ | |
111 f[curptr] += f[curptr-stepsize]; | |
112 curptr -= stepsize; | |
113 } | |
114 } | |
115 } | |
116 } | |
117 | |
118 static void fwd_sums(double *f) | |
119 { | |
120 int stepsize,stage,curptr,nthreads,thread,step,nsteps; | |
121 | |
122 for(stage=dct_NxN_log2N-1; stage >=1; stage--){ | |
123 nthreads = 1<<(stage-1); | |
124 stepsize = nthreads<<1; | |
125 nsteps = (1<<(dct_NxN_log2N-stage)) - 1; | |
126 for(thread=1; thread<=nthreads; thread++){ | |
127 curptr=nthreads +thread-1; | |
128 for(step=1; step<=nsteps; step++){ | |
129 f[curptr] += f[curptr+stepsize]; | |
130 curptr += stepsize; | |
131 } | |
132 } | |
133 } | |
134 } | |
135 | |
136 static void scramble(double *f,int len){ | |
137 int i,ii1,ii2; | |
138 | |
139 bitrev(f,len); | |
140 bitrev(&f[0], len>>1); | |
141 bitrev(&f[len>>1], len>>1); | |
142 ii1=len-1; | |
143 ii2=len>>1; | |
144 for(i=0; i<(len>>2); i++){ | |
145 SWAP(f[ii1], f[ii2]); | |
146 ii1--; | |
147 ii2++; | |
148 } | |
149 } | |
150 | |
151 static void unscramble(double *f,int len) | |
152 { | |
153 int i,ii1,ii2; | |
154 | |
155 ii1 = len-1; | |
156 ii2 = len>>1; | |
157 for(i=0; i<(len>>2); i++){ | |
158 SWAP(f[ii1], f[ii2]); | |
159 ii1--; | |
160 ii2++; | |
161 } | |
162 bitrev(&f[0], len>>1); | |
163 bitrev(&f[len>>1], len>>1); | |
164 bitrev(f,len); | |
165 } | |
166 | |
167 static void inv_butterflies(double *f) | |
168 { | |
169 int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; | |
170 double Cfac,T; | |
171 | |
172 for(stage=1; stage<=dct_NxN_log2N;stage++){ | |
173 ngroups=1<<(dct_NxN_log2N-stage); | |
174 wingspan=1<<(stage-1); | |
175 increment=wingspan<<1; | |
176 for(butterfly=1; butterfly<=wingspan; butterfly++){ | |
177 Cfac = dct_NxN_costable[wingspan+butterfly-1]; | |
178 baseptr=0; | |
179 for(group=1; group<=ngroups; group++){ | |
180 ii1=baseptr+butterfly-1; | |
181 ii2=ii1+wingspan; | |
182 T=Cfac * f[ii2]; | |
183 f[ii2]=f[ii1]-T; | |
184 f[ii1]=f[ii1]+T; | |
185 baseptr += increment; | |
186 } | |
187 } | |
188 } | |
189 } | |
190 | |
191 static void fwd_butterflies(double *f) | |
192 { | |
193 int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; | |
194 double Cfac,T; | |
195 | |
196 for(stage=dct_NxN_log2N; stage>=1;stage--){ | |
197 ngroups=1<<(dct_NxN_log2N-stage); | |
198 wingspan=1<<(stage-1); | |
199 increment=wingspan<<1; | |
200 for(butterfly=1; butterfly<=wingspan; butterfly++){ | |
201 Cfac = dct_NxN_costable[wingspan+butterfly-1]; | |
202 baseptr=0; | |
203 for(group=1; group<=ngroups; group++){ | |
204 ii1=baseptr+butterfly-1; | |
205 ii2=ii1+wingspan; | |
206 T= f[ii2]; | |
207 f[ii2]=Cfac *(f[ii1]-T); | |
208 f[ii1]=f[ii1]+T; | |
209 baseptr += increment; | |
210 } | |
211 } | |
212 } | |
213 } | |
214 | |
215 static void ifct_noscale(double *f) | |
216 { | |
217 f[0] *= INVROOT2; | |
218 inv_sums(f); | |
219 bitrev(f,N); | |
220 inv_butterflies(f); | |
221 unscramble(f,N); | |
222 } | |
223 | |
224 static void fct_noscale(double *f) | |
225 { | |
226 scramble(f,N); | |
227 fwd_butterflies(f); | |
228 bitrev(f,N); | |
229 fwd_sums(f); | |
230 f[0] *= INVROOT2; | |
231 } | |
232 | |
233 void fdct_NxN(gray **pixels, double **dcts) { | |
234 int u,v; | |
235 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
236 | |
237 for (u=0; u < N; u++) | |
238 for (v=0; v < M; v++) | |
239 dcts[u][v] = ((int) pixels[u][v] - 128); | |
240 | |
241 for (u=0; u<=M-1; u++){ | |
242 fct_noscale(dcts[u]); | |
243 } | |
244 for (v=0; v<=N-1; v++){ | |
245 for (u=0; u<=M-1; u++){ | |
246 dct_NxN_tmp[u] = dcts[u][v]; | |
247 } | |
248 fct_noscale(dct_NxN_tmp); | |
249 for (u=0; u<=M-1; u++){ | |
250 dcts[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
251 } | |
252 } | |
253 } | |
254 | |
255 void idct_NxN(double **dcts, gray **pixels) { | |
256 int u,v; | |
257 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
258 | |
259 double **tmp; | |
260 | |
261 tmp = alloc_coeffs(N, N); | |
262 for (u=0;u<N;u++) | |
263 for (v=0;v<M;v++) | |
264 tmp[u][v] = dcts[u][v]; | |
265 | |
266 for (u=0; u<=M-1; u++){ | |
267 ifct_noscale(tmp[u]); | |
268 } | |
269 for (v=0; v<=N-1; v++){ | |
270 for (u=0; u<=M-1; u++){ | |
271 dct_NxN_tmp[u] = tmp[u][v]; | |
272 } | |
273 ifct_noscale(dct_NxN_tmp); | |
274 for (u=0; u<=M-1; u++){ | |
275 tmp[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
276 } | |
277 } | |
278 | |
279 for (u=0;u<N;u++) | |
280 for (v=0;v<M;v++) | |
281 pixels[u][v] = PIXELRANGE(tmp[u][v] + 128.5); | |
282 free(tmp); | |
283 } | |
284 | |
285 void fdct_inplace_NxN(double **coeffs) { | |
286 int u,v; | |
287 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
288 | |
289 for (u=0; u<=M-1; u++) | |
290 fct_noscale(coeffs[u]); | |
291 | |
292 for (v=0; v<=N-1; v++){ | |
293 for (u=0; u<=M-1; u++) | |
294 dct_NxN_tmp[u] = coeffs[u][v]; | |
295 | |
296 fct_noscale(dct_NxN_tmp); | |
297 for (u=0; u<=M-1; u++) | |
298 coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
299 } | |
300 } | |
301 | |
302 void idct_inplace_NxN(double **coeffs) { | |
303 int u,v; | |
304 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
305 | |
306 for (u=0; u<=M-1; u++) | |
307 ifct_noscale(coeffs[u]); | |
308 | |
309 for (v=0; v<=N-1; v++) { | |
310 for (u=0; u<=M-1; u++) | |
311 dct_NxN_tmp[u] = coeffs[u][v]; | |
312 | |
313 ifct_noscale(dct_NxN_tmp); | |
314 for (u=0; u<=M-1; u++) | |
315 coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
316 } | |
317 | |
318 } | |
319 | |
320 double **dct_NxM_costable_x = NULL; | |
321 double **dct_NxM_costable_y = NULL; | |
322 | |
323 void init_dct_NxM(int cols, int rows) { | |
324 int i, j; | |
325 double cx = sqrt(2.0 / cols); | |
326 double cy = sqrt(2.0 / rows); | |
327 | |
328 #ifdef DEBUG | |
329 if (cols <= 0 || rows <= 0) { | |
330 fprintf(stderr, "init_dct_NxM(): dimensions out of range\n"); | |
331 exit(1); | |
332 } | |
333 #endif | |
334 | |
335 if (dct_NxM_costable_x && N != cols) { | |
336 free_coeffs(dct_NxM_costable_x); | |
337 dct_NxM_costable_x = NULL; | |
338 } | |
339 | |
340 if (dct_NxM_costable_y && M != rows) { | |
341 free_coeffs(dct_NxM_costable_y); | |
342 dct_NxM_costable_y = NULL; | |
343 } | |
344 | |
345 if (!dct_NxM_costable_x) | |
346 dct_NxM_costable_x = alloc_coeffs(cols, cols); | |
347 if (!dct_NxM_costable_y) | |
348 dct_NxM_costable_y = alloc_coeffs(rows, rows); | |
349 | |
350 N = cols; | |
351 M = rows; | |
352 | |
353 for (i = 0; i < cols; i++) { | |
354 for (j = 0; j < cols; j++) { | |
355 dct_NxM_costable_x[i][j] = cx * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * N)); | |
356 } | |
357 } | |
358 | |
359 for (i = 0; i < rows; i++) { | |
360 for (j = 0; j < rows; j++) { | |
361 dct_NxM_costable_y[i][j] = cy * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * M)); | |
362 } | |
363 } | |
364 } | |
365 | |
366 void fdct_NxM(gray **pixels, double **dcts) { | |
367 int x, y; | |
368 int i, j; | |
369 double t; | |
370 double cx0 = sqrt(1.0 / N); | |
371 double cy0 = sqrt(1.0 / M); | |
372 | |
373 t = 0.0; | |
374 for (x = 0; x < N; x++) | |
375 for (y = 0; y < M; y++) | |
376 t += ((int) pixels[y][x] - 128); | |
377 dcts[0][0] = cx0 * cy0 * t; | |
378 | |
379 for (i = 1; i < N; i++) { | |
380 t = 0.0; | |
381 for (x = 0; x < N; x++) { | |
382 double s = 0.0; | |
383 for (y = 0; y < M; y++) { | |
384 s += ((int) pixels[y][x] - 128); | |
385 } | |
386 t += s * dct_NxM_costable_x[x][i]; | |
387 } | |
388 dcts[0][i] = cy0 * t; | |
389 } | |
390 | |
391 for (j = 1; j < M; j++) { | |
392 t = 0.0; | |
393 for (y = 0; y < M; y++) { | |
394 double s = 0.0; | |
395 for (x = 0; x < N; x++) { | |
396 s += ((int) pixels[y][x] - 128); | |
397 } | |
398 t += s * dct_NxM_costable_y[y][j]; | |
399 } | |
400 dcts[j][0] = cx0 * t; | |
401 } | |
402 | |
403 for (i = 1; i < N; i++) { | |
404 for (j = 1; j < M; j++) { | |
405 t = 0.0; | |
406 for (x = 0; x < N; x++) { | |
407 double s = 0; | |
408 for (y = 0; y < M; y++) { | |
409 s += ((int) pixels[y][x] - 128) * dct_NxM_costable_y[y][j]; | |
410 } | |
411 t += s * dct_NxM_costable_x[x][i]; | |
412 } | |
413 dcts[j][i] = t; | |
414 } | |
415 } | |
416 } | |
417 | |
418 void idct_NxM(double **dcts, gray **pixels) { | |
419 int x, y; | |
420 int i, j; | |
421 double cx0 = sqrt(1.0 / N); | |
422 double cy0 = sqrt(1.0 / M); | |
423 double t; | |
424 | |
425 for (x = 0; x < N; x++) { | |
426 for (y = 0; y < M; y++) { | |
427 | |
428 t = cx0 * cy0 * dcts[0][0]; | |
429 | |
430 for (i = 1; i < N; i++) | |
431 t += cy0 * dcts[0][i] * dct_NxM_costable_x[x][i]; | |
432 | |
433 for (j = 1; j < M; j++) | |
434 t += cx0 * dcts[j][0] * dct_NxM_costable_y[y][j]; | |
435 | |
436 for (i = 1; i < N; i++) { | |
437 double s = 0.0; | |
438 for (j = 1; j < M; j++) { | |
439 s += dcts[j][i] * dct_NxM_costable_y[y][j]; | |
440 } | |
441 t += s * dct_NxM_costable_x[x][i]; | |
442 } | |
443 | |
444 pixels[y][x] = PIXELRANGE((int) (t + 128.5)); | |
445 } | |
446 } | |
447 } | |
448 | |
449 double C[NJPEG][NJPEG]; | |
450 double Ct[NJPEG][NJPEG]; | |
451 int Quantum[NJPEG][NJPEG]; | |
452 | |
453 void init_quantum_8x8(int quality) { | |
454 int i; | |
455 int j; | |
456 | |
457 for (i = 0; i < NJPEG; i++) | |
458 for ( j = 0 ; j < NJPEG ; j++ ) | |
459 Quantum[ i ][ j ] = 1 + ( ( 1 + i + j ) * quality ); | |
460 } | |
461 | |
462 void init_quantum_JPEG_lumin(int quality) { | |
463 int i; | |
464 int j; | |
465 | |
466 if (quality < 50) | |
467 quality = 5000 / quality; | |
468 else | |
469 quality = 200 - quality * 2; | |
470 | |
471 for (i = 0; i < NJPEG; i++) | |
472 for (j = 0 ; j < NJPEG ; j++) | |
473 if (quality) | |
474 Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; | |
475 else | |
476 Quantum[i][j] = JPEG_lumin_quant_table[i][j]; | |
477 } | |
478 | |
479 void init_quantum_JPEG_chromin(int quality) { | |
480 int i; | |
481 int j; | |
482 | |
483 if (quality < 50) | |
484 quality = 5000 / quality; | |
485 else | |
486 quality = 200 - quality * 2; | |
487 | |
488 for (i = 0; i < NJPEG; i++) | |
489 for (j = 0 ; j < NJPEG ; j++) | |
490 if (quality) | |
491 Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; | |
492 else | |
493 Quantum[i][j] = JPEG_lumin_quant_table[i][j]; | |
494 } | |
495 | |
496 void quantize_8x8(double **transform) { | |
497 int i; | |
498 int j; | |
499 | |
500 for (i = 0; i < NJPEG; i++) | |
501 for (j = 0; j < NJPEG; j++) | |
502 transform[i][j] = ROUND(transform[i][j] / Quantum[i][j]); | |
503 } | |
504 | |
505 void dequantize_8x8(double **transform) { | |
506 int i; | |
507 int j; | |
508 | |
509 for (i = 0; i < NJPEG; i++) | |
510 for (j = 0; j < NJPEG; j++) | |
511 transform[i][j] = ROUND(transform[i][j] * Quantum[i][j]); | |
512 } | |
513 | |
514 void init_dct_8x8() { | |
515 int i; | |
516 int j; | |
517 double pi = atan( 1.0 ) * 4.0; | |
518 | |
519 for ( j = 0 ; j < NJPEG ; j++ ) { | |
520 C[ 0 ][ j ] = 1.0 / sqrt( (double) NJPEG ); | |
521 Ct[ j ][ 0 ] = C[ 0 ][ j ]; | |
522 } | |
523 | |
524 for ( i = 1 ; i < NJPEG ; i++ ) | |
525 for ( j = 0 ; j < NJPEG ; j++ ) { | |
526 C[ i ][ j ] = sqrt( 2.0 / NJPEG ) * cos( pi * ( 2 * j + 1 ) * i / ( 2.0 * NJPEG ) ); | |
527 Ct[ j ][ i ] = C[ i ][ j ]; | |
528 } | |
529 } | |
530 | |
531 /* | |
532 * The Forward DCT routine implements the matrix function: | |
533 * | |
534 * DCT = C * pixels * Ct | |
535 */ | |
536 | |
537 void fdct_8x8(gray **input, double **output) { | |
538 double temp[NJPEG][NJPEG]; | |
539 double temp1; | |
540 int i; | |
541 int j; | |
542 int k; | |
543 | |
544 /* MatrixMultiply( temp, input, Ct ); */ | |
545 for ( i = 0 ; i < NJPEG ; i++ ) { | |
546 for ( j = 0 ; j < NJPEG ; j++ ) { | |
547 temp[ i ][ j ] = 0.0; | |
548 for ( k = 0 ; k < NJPEG ; k++ ) | |
549 temp[ i ][ j ] += ( (int) input[ i ][ k ] - 128 ) * | |
550 Ct[ k ][ j ]; | |
551 } | |
552 } | |
553 | |
554 /* MatrixMultiply( output, C, temp ); */ | |
555 for ( i = 0 ; i < NJPEG ; i++ ) { | |
556 for ( j = 0 ; j < NJPEG ; j++ ) { | |
557 temp1 = 0.0; | |
558 for ( k = 0 ; k < NJPEG ; k++ ) | |
559 temp1 += C[ i ][ k ] * temp[ k ][ j ]; | |
560 output[ i ][ j ] = temp1; | |
561 } | |
562 } | |
563 } | |
564 | |
565 void fdct_block_8x8(gray **input, int col, int row, double **output) { | |
566 int i; | |
567 gray *input_array[NJPEG]; | |
568 | |
569 for (i = 0; i < NJPEG; i++) | |
570 input_array[i] = &input[row + i][col]; | |
571 | |
572 fdct_8x8(input_array, output); | |
573 } | |
574 | |
575 /* | |
576 * The Inverse DCT routine implements the matrix function: | |
577 * | |
578 * pixels = C * DCT * Ct | |
579 */ | |
580 | |
581 void idct_8x8(double **input, gray **output) { | |
582 double temp[ NJPEG ][ NJPEG ]; | |
583 double temp1; | |
584 int i; | |
585 int j; | |
586 int k; | |
587 | |
588 /* MatrixMultiply( temp, input, C ); */ | |
589 for ( i = 0 ; i < NJPEG ; i++ ) { | |
590 for ( j = 0 ; j < NJPEG ; j++ ) { | |
591 temp[ i ][ j ] = 0.0; | |
592 for ( k = 0 ; k < NJPEG ; k++ ) | |
593 temp[ i ][ j ] += input[ i ][ k ] * C[ k ][ j ]; | |
594 } | |
595 } | |
596 | |
597 /* MatrixMultiply( output, Ct, temp ); */ | |
598 for ( i = 0 ; i < NJPEG ; i++ ) { | |
599 for ( j = 0 ; j < NJPEG ; j++ ) { | |
600 temp1 = 0.0; | |
601 for ( k = 0 ; k < NJPEG ; k++ ) | |
602 temp1 += Ct[ i ][ k ] * temp[ k ][ j ]; | |
603 temp1 += 128.0; | |
604 output[i][j] = PIXELRANGE(ROUND(temp1)); | |
605 } | |
606 } | |
607 } | |
608 | |
609 void idct_block_8x8(double **input, gray **output, int col, int row) { | |
610 int i; | |
611 gray *output_array[NJPEG]; | |
612 | |
613 for (i = 0; i < NJPEG; i++) | |
614 output_array[i] = &output[row + i][col]; | |
615 | |
616 idct_8x8(input, output_array); | |
617 } | |
618 | |
619 int is_middle_frequency_coeff_8x8(int coeff) { | |
620 switch (coeff) { | |
621 case 3: | |
622 case 10: | |
623 case 17: | |
624 case 24: | |
625 return 1; | |
626 case 4: | |
627 case 11: | |
628 case 18: | |
629 case 25: | |
630 case 32: | |
631 return 2; | |
632 case 5: | |
633 case 12: | |
634 case 19: | |
635 case 26: | |
636 case 33: | |
637 case 40: | |
638 return 3; | |
639 case 13: | |
640 case 20: | |
641 case 27: | |
642 case 34: | |
643 case 41: | |
644 return 4; | |
645 case 28: | |
646 case 35: | |
647 return 5; | |
648 default: | |
649 return 0; | |
650 } | |
651 } |