Mercurial > hg > wm
comparison Meerwald-dir/dct.c @ 24:9f20bce6184e v0.7
move directories, support netpbm 11
| author | Peter Meerwald-Stadler <pmeerw@pmeerw.net> |
|---|---|
| date | Fri, 20 Dec 2024 13:08:59 +0100 |
| parents | Meerwald/dct.c@bd669312f068 |
| children |
comparison
equal
deleted
inserted
replaced
| 23:71dd4b96221b | 24:9f20bce6184e |
|---|---|
| 1 #include "wm.h" | |
| 2 #include "dct.h" | |
| 3 | |
| 4 #define INVROOT2 0.7071067814 | |
| 5 #define SWAP(A, B) {double t = A; A = B; B = t;} | |
| 6 | |
| 7 int N; | |
| 8 int M; | |
| 9 | |
| 10 double *dct_NxN_tmp = NULL; | |
| 11 double *dct_NxN_costable = NULL; | |
| 12 int dct_NxN_log2N = 0; | |
| 13 | |
| 14 static const unsigned int JPEG_lumin_quant_table[NJPEG][NJPEG] = { | |
| 15 {16, 11, 10, 16, 24, 40, 51, 61}, | |
| 16 {12, 12, 14, 19, 26, 58, 60, 55}, | |
| 17 {14, 13, 16, 24, 40, 57, 69, 56}, | |
| 18 {14, 17, 22, 29, 51, 87, 80, 62}, | |
| 19 {18, 22, 37, 56, 68, 109, 103, 77}, | |
| 20 {24, 35, 55, 64, 81, 104, 113, 92}, | |
| 21 {49, 64, 78, 87, 103, 121, 120, 101}, | |
| 22 {72, 92, 95, 98, 112, 100, 103, 99}}; | |
| 23 | |
| 24 static void initcosarray() | |
| 25 { | |
| 26 int i,group,base,item,nitems,halfN; | |
| 27 double factor; | |
| 28 | |
| 29 dct_NxN_log2N = -1; | |
| 30 do{ | |
| 31 dct_NxN_log2N++; | |
| 32 if ((1<<dct_NxN_log2N)>N){ | |
| 33 fprintf(stderr, "dct_NxN: %d not a power of 2\n", N); | |
| 34 exit(1); | |
| 35 } | |
| 36 }while((1<<dct_NxN_log2N)<N); | |
| 37 if (dct_NxN_costable) free(dct_NxN_costable); | |
| 38 dct_NxN_costable = malloc(N * sizeof(double)); | |
| 39 #ifdef DEBUG | |
| 40 if(!dct_NxN_costable){ | |
| 41 fprintf(stderr, "Unable to allocate C array\n"); | |
| 42 exit(1); | |
| 43 } | |
| 44 #endif | |
| 45 halfN=N/2; | |
| 46 for(i=0;i<=halfN-1;i++) dct_NxN_costable[halfN+i]=4*i+1; | |
| 47 for(group=1;group<=dct_NxN_log2N-1;group++){ | |
| 48 base= 1<<(group-1); | |
| 49 nitems=base; | |
| 50 factor = 1.0*(1<<(dct_NxN_log2N-group)); | |
| 51 for(item=1; item<=nitems;item++) dct_NxN_costable[base+item-1]=factor*dct_NxN_costable[halfN+item-1]; | |
| 52 } | |
| 53 | |
| 54 for(i=1;i<=N-1;i++) dct_NxN_costable[i] = 1.0/(2.0*cos(dct_NxN_costable[i]*M_PI/(2.0*N))); | |
| 55 } | |
| 56 | |
| 57 void init_dct_NxN(int width, int height) { | |
| 58 #ifdef DEBUG | |
| 59 if (width != height || width <= 0) { | |
| 60 fprintf(stderr, "init_dct_NxN(): dimensions out of range\n"); | |
| 61 exit(1); | |
| 62 } | |
| 63 #endif | |
| 64 | |
| 65 if (dct_NxN_tmp && M != height) | |
| 66 free(dct_NxN_tmp); | |
| 67 | |
| 68 N = width; | |
| 69 M = height; | |
| 70 | |
| 71 dct_NxN_tmp = malloc(height * sizeof(double)); | |
| 72 #ifdef DEBUG | |
| 73 if (!dct_NxN_tmp) { | |
| 74 fprintf(stderr, "init_dct_NxN(): failed to allocate memory\n"); | |
| 75 exit(1); | |
| 76 } | |
| 77 #endif | |
| 78 | |
| 79 initcosarray(); | |
| 80 } | |
| 81 | |
| 82 static void bitrev(double *f, int len) | |
| 83 { | |
| 84 int i,j,m; | |
| 85 | |
| 86 if (len<=2) return; /* No action necessary if n=1 or n=2 */ | |
| 87 j=1; | |
| 88 for(i=1; i<=len; i++){ | |
| 89 if(i<j) | |
| 90 SWAP(f[j-1], f[i-1]); | |
| 91 m = len>>1; | |
| 92 while(j>m){ | |
| 93 j=j-m; | |
| 94 m=(m+1)>>1; | |
| 95 } | |
| 96 j=j+m; | |
| 97 } | |
| 98 } | |
| 99 | |
| 100 static void inv_sums(double *f) | |
| 101 { | |
| 102 int stepsize,stage,curptr,nthreads,thread,step,nsteps; | |
| 103 | |
| 104 for(stage=1; stage <=dct_NxN_log2N-1; stage++){ | |
| 105 nthreads = 1<<(stage-1); | |
| 106 stepsize = nthreads<<1; | |
| 107 nsteps = (1<<(dct_NxN_log2N-stage)) - 1; | |
| 108 for(thread=1; thread<=nthreads; thread++){ | |
| 109 curptr=N-thread; | |
| 110 for(step=1; step<=nsteps; step++){ | |
| 111 f[curptr] += f[curptr-stepsize]; | |
| 112 curptr -= stepsize; | |
| 113 } | |
| 114 } | |
| 115 } | |
| 116 } | |
| 117 | |
| 118 static void fwd_sums(double *f) | |
| 119 { | |
| 120 int stepsize,stage,curptr,nthreads,thread,step,nsteps; | |
| 121 | |
| 122 for(stage=dct_NxN_log2N-1; stage >=1; stage--){ | |
| 123 nthreads = 1<<(stage-1); | |
| 124 stepsize = nthreads<<1; | |
| 125 nsteps = (1<<(dct_NxN_log2N-stage)) - 1; | |
| 126 for(thread=1; thread<=nthreads; thread++){ | |
| 127 curptr=nthreads +thread-1; | |
| 128 for(step=1; step<=nsteps; step++){ | |
| 129 f[curptr] += f[curptr+stepsize]; | |
| 130 curptr += stepsize; | |
| 131 } | |
| 132 } | |
| 133 } | |
| 134 } | |
| 135 | |
| 136 static void scramble(double *f,int len){ | |
| 137 int i,ii1,ii2; | |
| 138 | |
| 139 bitrev(f,len); | |
| 140 bitrev(&f[0], len>>1); | |
| 141 bitrev(&f[len>>1], len>>1); | |
| 142 ii1=len-1; | |
| 143 ii2=len>>1; | |
| 144 for(i=0; i<(len>>2); i++){ | |
| 145 SWAP(f[ii1], f[ii2]); | |
| 146 ii1--; | |
| 147 ii2++; | |
| 148 } | |
| 149 } | |
| 150 | |
| 151 static void unscramble(double *f,int len) | |
| 152 { | |
| 153 int i,ii1,ii2; | |
| 154 | |
| 155 ii1 = len-1; | |
| 156 ii2 = len>>1; | |
| 157 for(i=0; i<(len>>2); i++){ | |
| 158 SWAP(f[ii1], f[ii2]); | |
| 159 ii1--; | |
| 160 ii2++; | |
| 161 } | |
| 162 bitrev(&f[0], len>>1); | |
| 163 bitrev(&f[len>>1], len>>1); | |
| 164 bitrev(f,len); | |
| 165 } | |
| 166 | |
| 167 static void inv_butterflies(double *f) | |
| 168 { | |
| 169 int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; | |
| 170 double Cfac,T; | |
| 171 | |
| 172 for(stage=1; stage<=dct_NxN_log2N;stage++){ | |
| 173 ngroups=1<<(dct_NxN_log2N-stage); | |
| 174 wingspan=1<<(stage-1); | |
| 175 increment=wingspan<<1; | |
| 176 for(butterfly=1; butterfly<=wingspan; butterfly++){ | |
| 177 Cfac = dct_NxN_costable[wingspan+butterfly-1]; | |
| 178 baseptr=0; | |
| 179 for(group=1; group<=ngroups; group++){ | |
| 180 ii1=baseptr+butterfly-1; | |
| 181 ii2=ii1+wingspan; | |
| 182 T=Cfac * f[ii2]; | |
| 183 f[ii2]=f[ii1]-T; | |
| 184 f[ii1]=f[ii1]+T; | |
| 185 baseptr += increment; | |
| 186 } | |
| 187 } | |
| 188 } | |
| 189 } | |
| 190 | |
| 191 static void fwd_butterflies(double *f) | |
| 192 { | |
| 193 int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; | |
| 194 double Cfac,T; | |
| 195 | |
| 196 for(stage=dct_NxN_log2N; stage>=1;stage--){ | |
| 197 ngroups=1<<(dct_NxN_log2N-stage); | |
| 198 wingspan=1<<(stage-1); | |
| 199 increment=wingspan<<1; | |
| 200 for(butterfly=1; butterfly<=wingspan; butterfly++){ | |
| 201 Cfac = dct_NxN_costable[wingspan+butterfly-1]; | |
| 202 baseptr=0; | |
| 203 for(group=1; group<=ngroups; group++){ | |
| 204 ii1=baseptr+butterfly-1; | |
| 205 ii2=ii1+wingspan; | |
| 206 T= f[ii2]; | |
| 207 f[ii2]=Cfac *(f[ii1]-T); | |
| 208 f[ii1]=f[ii1]+T; | |
| 209 baseptr += increment; | |
| 210 } | |
| 211 } | |
| 212 } | |
| 213 } | |
| 214 | |
| 215 static void ifct_noscale(double *f) | |
| 216 { | |
| 217 f[0] *= INVROOT2; | |
| 218 inv_sums(f); | |
| 219 bitrev(f,N); | |
| 220 inv_butterflies(f); | |
| 221 unscramble(f,N); | |
| 222 } | |
| 223 | |
| 224 static void fct_noscale(double *f) | |
| 225 { | |
| 226 scramble(f,N); | |
| 227 fwd_butterflies(f); | |
| 228 bitrev(f,N); | |
| 229 fwd_sums(f); | |
| 230 f[0] *= INVROOT2; | |
| 231 } | |
| 232 | |
| 233 void fdct_NxN(gray **pixels, double **dcts) { | |
| 234 int u,v; | |
| 235 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
| 236 | |
| 237 for (u=0; u < N; u++) | |
| 238 for (v=0; v < M; v++) | |
| 239 dcts[u][v] = ((int) pixels[u][v] - 128); | |
| 240 | |
| 241 for (u=0; u<=M-1; u++){ | |
| 242 fct_noscale(dcts[u]); | |
| 243 } | |
| 244 for (v=0; v<=N-1; v++){ | |
| 245 for (u=0; u<=M-1; u++){ | |
| 246 dct_NxN_tmp[u] = dcts[u][v]; | |
| 247 } | |
| 248 fct_noscale(dct_NxN_tmp); | |
| 249 for (u=0; u<=M-1; u++){ | |
| 250 dcts[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
| 251 } | |
| 252 } | |
| 253 } | |
| 254 | |
| 255 void idct_NxN(double **dcts, gray **pixels) { | |
| 256 int u,v; | |
| 257 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
| 258 | |
| 259 double **tmp; | |
| 260 | |
| 261 tmp = alloc_coeffs(N, N); | |
| 262 for (u=0;u<N;u++) | |
| 263 for (v=0;v<M;v++) | |
| 264 tmp[u][v] = dcts[u][v]; | |
| 265 | |
| 266 for (u=0; u<=M-1; u++){ | |
| 267 ifct_noscale(tmp[u]); | |
| 268 } | |
| 269 for (v=0; v<=N-1; v++){ | |
| 270 for (u=0; u<=M-1; u++){ | |
| 271 dct_NxN_tmp[u] = tmp[u][v]; | |
| 272 } | |
| 273 ifct_noscale(dct_NxN_tmp); | |
| 274 for (u=0; u<=M-1; u++){ | |
| 275 tmp[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
| 276 } | |
| 277 } | |
| 278 | |
| 279 for (u=0;u<N;u++) | |
| 280 for (v=0;v<M;v++) | |
| 281 pixels[u][v] = PIXELRANGE(tmp[u][v] + 128.5); | |
| 282 free(tmp); | |
| 283 } | |
| 284 | |
| 285 void fdct_inplace_NxN(double **coeffs) { | |
| 286 int u,v; | |
| 287 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
| 288 | |
| 289 for (u=0; u<=M-1; u++) | |
| 290 fct_noscale(coeffs[u]); | |
| 291 | |
| 292 for (v=0; v<=N-1; v++){ | |
| 293 for (u=0; u<=M-1; u++) | |
| 294 dct_NxN_tmp[u] = coeffs[u][v]; | |
| 295 | |
| 296 fct_noscale(dct_NxN_tmp); | |
| 297 for (u=0; u<=M-1; u++) | |
| 298 coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
| 299 } | |
| 300 } | |
| 301 | |
| 302 void idct_inplace_NxN(double **coeffs) { | |
| 303 int u,v; | |
| 304 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
| 305 | |
| 306 for (u=0; u<=M-1; u++) | |
| 307 ifct_noscale(coeffs[u]); | |
| 308 | |
| 309 for (v=0; v<=N-1; v++) { | |
| 310 for (u=0; u<=M-1; u++) | |
| 311 dct_NxN_tmp[u] = coeffs[u][v]; | |
| 312 | |
| 313 ifct_noscale(dct_NxN_tmp); | |
| 314 for (u=0; u<=M-1; u++) | |
| 315 coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
| 316 } | |
| 317 | |
| 318 } | |
| 319 | |
| 320 double **dct_NxM_costable_x = NULL; | |
| 321 double **dct_NxM_costable_y = NULL; | |
| 322 | |
| 323 void init_dct_NxM(int cols, int rows) { | |
| 324 int i, j; | |
| 325 double cx = sqrt(2.0 / cols); | |
| 326 double cy = sqrt(2.0 / rows); | |
| 327 | |
| 328 #ifdef DEBUG | |
| 329 if (cols <= 0 || rows <= 0) { | |
| 330 fprintf(stderr, "init_dct_NxM(): dimensions out of range\n"); | |
| 331 exit(1); | |
| 332 } | |
| 333 #endif | |
| 334 | |
| 335 if (dct_NxM_costable_x && N != cols) { | |
| 336 free_coeffs(dct_NxM_costable_x); | |
| 337 dct_NxM_costable_x = NULL; | |
| 338 } | |
| 339 | |
| 340 if (dct_NxM_costable_y && M != rows) { | |
| 341 free_coeffs(dct_NxM_costable_y); | |
| 342 dct_NxM_costable_y = NULL; | |
| 343 } | |
| 344 | |
| 345 if (!dct_NxM_costable_x) | |
| 346 dct_NxM_costable_x = alloc_coeffs(cols, cols); | |
| 347 if (!dct_NxM_costable_y) | |
| 348 dct_NxM_costable_y = alloc_coeffs(rows, rows); | |
| 349 | |
| 350 N = cols; | |
| 351 M = rows; | |
| 352 | |
| 353 for (i = 0; i < cols; i++) { | |
| 354 for (j = 0; j < cols; j++) { | |
| 355 dct_NxM_costable_x[i][j] = cx * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * N)); | |
| 356 } | |
| 357 } | |
| 358 | |
| 359 for (i = 0; i < rows; i++) { | |
| 360 for (j = 0; j < rows; j++) { | |
| 361 dct_NxM_costable_y[i][j] = cy * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * M)); | |
| 362 } | |
| 363 } | |
| 364 } | |
| 365 | |
| 366 void fdct_NxM(gray **pixels, double **dcts) { | |
| 367 int x, y; | |
| 368 int i, j; | |
| 369 double t; | |
| 370 double cx0 = sqrt(1.0 / N); | |
| 371 double cy0 = sqrt(1.0 / M); | |
| 372 | |
| 373 t = 0.0; | |
| 374 for (x = 0; x < N; x++) | |
| 375 for (y = 0; y < M; y++) | |
| 376 t += ((int) pixels[y][x] - 128); | |
| 377 dcts[0][0] = cx0 * cy0 * t; | |
| 378 | |
| 379 for (i = 1; i < N; i++) { | |
| 380 t = 0.0; | |
| 381 for (x = 0; x < N; x++) { | |
| 382 double s = 0.0; | |
| 383 for (y = 0; y < M; y++) { | |
| 384 s += ((int) pixels[y][x] - 128); | |
| 385 } | |
| 386 t += s * dct_NxM_costable_x[x][i]; | |
| 387 } | |
| 388 dcts[0][i] = cy0 * t; | |
| 389 } | |
| 390 | |
| 391 for (j = 1; j < M; j++) { | |
| 392 t = 0.0; | |
| 393 for (y = 0; y < M; y++) { | |
| 394 double s = 0.0; | |
| 395 for (x = 0; x < N; x++) { | |
| 396 s += ((int) pixels[y][x] - 128); | |
| 397 } | |
| 398 t += s * dct_NxM_costable_y[y][j]; | |
| 399 } | |
| 400 dcts[j][0] = cx0 * t; | |
| 401 } | |
| 402 | |
| 403 for (i = 1; i < N; i++) { | |
| 404 for (j = 1; j < M; j++) { | |
| 405 t = 0.0; | |
| 406 for (x = 0; x < N; x++) { | |
| 407 double s = 0; | |
| 408 for (y = 0; y < M; y++) { | |
| 409 s += ((int) pixels[y][x] - 128) * dct_NxM_costable_y[y][j]; | |
| 410 } | |
| 411 t += s * dct_NxM_costable_x[x][i]; | |
| 412 } | |
| 413 dcts[j][i] = t; | |
| 414 } | |
| 415 } | |
| 416 } | |
| 417 | |
| 418 void idct_NxM(double **dcts, gray **pixels) { | |
| 419 int x, y; | |
| 420 int i, j; | |
| 421 double cx0 = sqrt(1.0 / N); | |
| 422 double cy0 = sqrt(1.0 / M); | |
| 423 double t; | |
| 424 | |
| 425 for (x = 0; x < N; x++) { | |
| 426 for (y = 0; y < M; y++) { | |
| 427 | |
| 428 t = cx0 * cy0 * dcts[0][0]; | |
| 429 | |
| 430 for (i = 1; i < N; i++) | |
| 431 t += cy0 * dcts[0][i] * dct_NxM_costable_x[x][i]; | |
| 432 | |
| 433 for (j = 1; j < M; j++) | |
| 434 t += cx0 * dcts[j][0] * dct_NxM_costable_y[y][j]; | |
| 435 | |
| 436 for (i = 1; i < N; i++) { | |
| 437 double s = 0.0; | |
| 438 for (j = 1; j < M; j++) { | |
| 439 s += dcts[j][i] * dct_NxM_costable_y[y][j]; | |
| 440 } | |
| 441 t += s * dct_NxM_costable_x[x][i]; | |
| 442 } | |
| 443 | |
| 444 pixels[y][x] = PIXELRANGE((int) (t + 128.5)); | |
| 445 } | |
| 446 } | |
| 447 } | |
| 448 | |
| 449 double C[NJPEG][NJPEG]; | |
| 450 double Ct[NJPEG][NJPEG]; | |
| 451 int Quantum[NJPEG][NJPEG]; | |
| 452 | |
| 453 void init_quantum_8x8(int quality) { | |
| 454 int i; | |
| 455 int j; | |
| 456 | |
| 457 for (i = 0; i < NJPEG; i++) | |
| 458 for ( j = 0 ; j < NJPEG ; j++ ) | |
| 459 Quantum[ i ][ j ] = 1 + ( ( 1 + i + j ) * quality ); | |
| 460 } | |
| 461 | |
| 462 void init_quantum_JPEG_lumin(int quality) { | |
| 463 int i; | |
| 464 int j; | |
| 465 | |
| 466 if (quality < 50) | |
| 467 quality = 5000 / quality; | |
| 468 else | |
| 469 quality = 200 - quality * 2; | |
| 470 | |
| 471 for (i = 0; i < NJPEG; i++) | |
| 472 for (j = 0 ; j < NJPEG ; j++) | |
| 473 if (quality) | |
| 474 Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; | |
| 475 else | |
| 476 Quantum[i][j] = JPEG_lumin_quant_table[i][j]; | |
| 477 } | |
| 478 | |
| 479 void init_quantum_JPEG_chromin(int quality) { | |
| 480 int i; | |
| 481 int j; | |
| 482 | |
| 483 if (quality < 50) | |
| 484 quality = 5000 / quality; | |
| 485 else | |
| 486 quality = 200 - quality * 2; | |
| 487 | |
| 488 for (i = 0; i < NJPEG; i++) | |
| 489 for (j = 0 ; j < NJPEG ; j++) | |
| 490 if (quality) | |
| 491 Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; | |
| 492 else | |
| 493 Quantum[i][j] = JPEG_lumin_quant_table[i][j]; | |
| 494 } | |
| 495 | |
| 496 void quantize_8x8(double **transform) { | |
| 497 int i; | |
| 498 int j; | |
| 499 | |
| 500 for (i = 0; i < NJPEG; i++) | |
| 501 for (j = 0; j < NJPEG; j++) | |
| 502 transform[i][j] = ROUND(transform[i][j] / Quantum[i][j]); | |
| 503 } | |
| 504 | |
| 505 void dequantize_8x8(double **transform) { | |
| 506 int i; | |
| 507 int j; | |
| 508 | |
| 509 for (i = 0; i < NJPEG; i++) | |
| 510 for (j = 0; j < NJPEG; j++) | |
| 511 transform[i][j] = ROUND(transform[i][j] * Quantum[i][j]); | |
| 512 } | |
| 513 | |
| 514 void init_dct_8x8() { | |
| 515 int i; | |
| 516 int j; | |
| 517 double pi = atan( 1.0 ) * 4.0; | |
| 518 | |
| 519 for ( j = 0 ; j < NJPEG ; j++ ) { | |
| 520 C[ 0 ][ j ] = 1.0 / sqrt( (double) NJPEG ); | |
| 521 Ct[ j ][ 0 ] = C[ 0 ][ j ]; | |
| 522 } | |
| 523 | |
| 524 for ( i = 1 ; i < NJPEG ; i++ ) | |
| 525 for ( j = 0 ; j < NJPEG ; j++ ) { | |
| 526 C[ i ][ j ] = sqrt( 2.0 / NJPEG ) * cos( pi * ( 2 * j + 1 ) * i / ( 2.0 * NJPEG ) ); | |
| 527 Ct[ j ][ i ] = C[ i ][ j ]; | |
| 528 } | |
| 529 } | |
| 530 | |
| 531 /* | |
| 532 * The Forward DCT routine implements the matrix function: | |
| 533 * | |
| 534 * DCT = C * pixels * Ct | |
| 535 */ | |
| 536 | |
| 537 void fdct_8x8(gray **input, double **output) { | |
| 538 double temp[NJPEG][NJPEG]; | |
| 539 double temp1; | |
| 540 int i; | |
| 541 int j; | |
| 542 int k; | |
| 543 | |
| 544 /* MatrixMultiply( temp, input, Ct ); */ | |
| 545 for ( i = 0 ; i < NJPEG ; i++ ) { | |
| 546 for ( j = 0 ; j < NJPEG ; j++ ) { | |
| 547 temp[ i ][ j ] = 0.0; | |
| 548 for ( k = 0 ; k < NJPEG ; k++ ) | |
| 549 temp[ i ][ j ] += ( (int) input[ i ][ k ] - 128 ) * | |
| 550 Ct[ k ][ j ]; | |
| 551 } | |
| 552 } | |
| 553 | |
| 554 /* MatrixMultiply( output, C, temp ); */ | |
| 555 for ( i = 0 ; i < NJPEG ; i++ ) { | |
| 556 for ( j = 0 ; j < NJPEG ; j++ ) { | |
| 557 temp1 = 0.0; | |
| 558 for ( k = 0 ; k < NJPEG ; k++ ) | |
| 559 temp1 += C[ i ][ k ] * temp[ k ][ j ]; | |
| 560 output[ i ][ j ] = temp1; | |
| 561 } | |
| 562 } | |
| 563 } | |
| 564 | |
| 565 void fdct_block_8x8(gray **input, int col, int row, double **output) { | |
| 566 int i; | |
| 567 gray *input_array[NJPEG]; | |
| 568 | |
| 569 for (i = 0; i < NJPEG; i++) | |
| 570 input_array[i] = &input[row + i][col]; | |
| 571 | |
| 572 fdct_8x8(input_array, output); | |
| 573 } | |
| 574 | |
| 575 /* | |
| 576 * The Inverse DCT routine implements the matrix function: | |
| 577 * | |
| 578 * pixels = C * DCT * Ct | |
| 579 */ | |
| 580 | |
| 581 void idct_8x8(double **input, gray **output) { | |
| 582 double temp[ NJPEG ][ NJPEG ]; | |
| 583 double temp1; | |
| 584 int i; | |
| 585 int j; | |
| 586 int k; | |
| 587 | |
| 588 /* MatrixMultiply( temp, input, C ); */ | |
| 589 for ( i = 0 ; i < NJPEG ; i++ ) { | |
| 590 for ( j = 0 ; j < NJPEG ; j++ ) { | |
| 591 temp[ i ][ j ] = 0.0; | |
| 592 for ( k = 0 ; k < NJPEG ; k++ ) | |
| 593 temp[ i ][ j ] += input[ i ][ k ] * C[ k ][ j ]; | |
| 594 } | |
| 595 } | |
| 596 | |
| 597 /* MatrixMultiply( output, Ct, temp ); */ | |
| 598 for ( i = 0 ; i < NJPEG ; i++ ) { | |
| 599 for ( j = 0 ; j < NJPEG ; j++ ) { | |
| 600 temp1 = 0.0; | |
| 601 for ( k = 0 ; k < NJPEG ; k++ ) | |
| 602 temp1 += Ct[ i ][ k ] * temp[ k ][ j ]; | |
| 603 temp1 += 128.0; | |
| 604 output[i][j] = PIXELRANGE(ROUND(temp1)); | |
| 605 } | |
| 606 } | |
| 607 } | |
| 608 | |
| 609 void idct_block_8x8(double **input, gray **output, int col, int row) { | |
| 610 int i; | |
| 611 gray *output_array[NJPEG]; | |
| 612 | |
| 613 for (i = 0; i < NJPEG; i++) | |
| 614 output_array[i] = &output[row + i][col]; | |
| 615 | |
| 616 idct_8x8(input, output_array); | |
| 617 } | |
| 618 | |
| 619 int is_middle_frequency_coeff_8x8(int coeff) { | |
| 620 switch (coeff) { | |
| 621 case 3: | |
| 622 case 10: | |
| 623 case 17: | |
| 624 case 24: | |
| 625 return 1; | |
| 626 case 4: | |
| 627 case 11: | |
| 628 case 18: | |
| 629 case 25: | |
| 630 case 32: | |
| 631 return 2; | |
| 632 case 5: | |
| 633 case 12: | |
| 634 case 19: | |
| 635 case 26: | |
| 636 case 33: | |
| 637 case 40: | |
| 638 return 3; | |
| 639 case 13: | |
| 640 case 20: | |
| 641 case 27: | |
| 642 case 34: | |
| 643 case 41: | |
| 644 return 4; | |
| 645 case 28: | |
| 646 case 35: | |
| 647 return 5; | |
| 648 default: | |
| 649 return 0; | |
| 650 } | |
| 651 } |
