Mercurial > hg > wm
comparison Meerwald/dct.c @ 0:be303a3f5ea8
import
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Sun, 12 Aug 2007 13:14:34 +0200 |
parents | |
children | acb6967ee76d |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:be303a3f5ea8 |
---|---|
1 #include "wm.h" | |
2 #include "dct.h" | |
3 | |
4 #define INVROOT2 0.7071067814 | |
5 #define SWAP(A, B) {double t = A; A = B; B = t;} | |
6 | |
7 int N; | |
8 int M; | |
9 | |
10 double *dct_NxN_tmp = NULL; | |
11 double *dct_NxN_costable = NULL; | |
12 int dct_NxN_log2N = 0; | |
13 | |
14 static const unsigned int JPEG_lumin_quant_table[NJPEG][NJPEG] = { | |
15 {16, 11, 10, 16, 24, 40, 51, 61}, | |
16 {12, 12, 14, 19, 26, 58, 60, 55}, | |
17 {14, 13, 16, 24, 40, 57, 69, 56}, | |
18 {14, 17, 22, 29, 51, 87, 80, 62}, | |
19 {18, 22, 37, 56, 68, 109, 103, 77}, | |
20 {24, 35, 55, 64, 81, 104, 113, 92}, | |
21 {49, 64, 78, 87, 103, 121, 120, 101}, | |
22 {72, 92, 95, 98, 112, 100, 103, 99}}; | |
23 | |
24 static const unsigned int JPEG_chromin_quant_table[NJPEG][NJPEG] = { | |
25 {17, 18, 24, 47, 99, 99, 99, 99}, | |
26 {18, 21, 26, 66, 99, 99, 99, 99}, | |
27 {24, 26, 56, 99, 99, 99, 99, 99}, | |
28 {47, 66, 99, 99, 99, 99, 99, 99}, | |
29 {99, 99, 99, 99, 99, 99, 99, 99}, | |
30 {99, 99, 99, 99, 99, 99, 99, 99}, | |
31 {99, 99, 99, 99, 99, 99, 99, 99}, | |
32 {99, 99, 99, 99, 99, 99, 99, 99}}; | |
33 | |
34 static void initcosarray() | |
35 { | |
36 int i,group,base,item,nitems,halfN; | |
37 double factor; | |
38 | |
39 dct_NxN_log2N = -1; | |
40 do{ | |
41 dct_NxN_log2N++; | |
42 if ((1<<dct_NxN_log2N)>N){ | |
43 fprintf(stderr, "dct_NxN: %d not a power of 2\n", N); | |
44 exit(1); | |
45 } | |
46 }while((1<<dct_NxN_log2N)<N); | |
47 if (dct_NxN_costable) free(dct_NxN_costable); | |
48 dct_NxN_costable = (double*) malloc(N * sizeof(double)); | |
49 #ifdef DEBUG | |
50 if(!dct_NxN_costable){ | |
51 fprintf(stderr, "Unable to allocate C array\n"); | |
52 exit(1); | |
53 } | |
54 #endif | |
55 halfN=N/2; | |
56 for(i=0;i<=halfN-1;i++) dct_NxN_costable[halfN+i]=4*i+1; | |
57 for(group=1;group<=dct_NxN_log2N-1;group++){ | |
58 base= 1<<(group-1); | |
59 nitems=base; | |
60 factor = 1.0*(1<<(dct_NxN_log2N-group)); | |
61 for(item=1; item<=nitems;item++) dct_NxN_costable[base+item-1]=factor*dct_NxN_costable[halfN+item-1]; | |
62 } | |
63 | |
64 for(i=1;i<=N-1;i++) dct_NxN_costable[i] = 1.0/(2.0*cos(dct_NxN_costable[i]*M_PI/(2.0*N))); | |
65 } | |
66 | |
67 void init_dct_NxN(int width, int height) { | |
68 #ifdef DEBUG | |
69 if (width != height || width <= 0) { | |
70 fprintf(stderr, "init_dct_NxN(): dimensions out of range\n"); | |
71 exit(1); | |
72 } | |
73 #endif | |
74 | |
75 if (dct_NxN_tmp && M != height) | |
76 free(dct_NxN_tmp); | |
77 | |
78 N = width; | |
79 M = height; | |
80 | |
81 dct_NxN_tmp = (double *) malloc(height * sizeof(double)); | |
82 #ifdef DEBUG | |
83 if (!dct_NxN_tmp) { | |
84 fprintf(stderr, "init_dct_NxN(): failed to allocate memory\n"); | |
85 exit(1); | |
86 } | |
87 #endif | |
88 | |
89 initcosarray(); | |
90 } | |
91 | |
92 static void bitrev(double *f, int len) | |
93 { | |
94 int i,j,m; | |
95 | |
96 if (len<=2) return; /* No action necessary if n=1 or n=2 */ | |
97 j=1; | |
98 for(i=1; i<=len; i++){ | |
99 if(i<j) | |
100 SWAP(f[j-1], f[i-1]); | |
101 m = len>>1; | |
102 while(j>m){ | |
103 j=j-m; | |
104 m=(m+1)>>1; | |
105 } | |
106 j=j+m; | |
107 } | |
108 } | |
109 | |
110 static void inv_sums(double *f) | |
111 { | |
112 int stepsize,stage,curptr,nthreads,thread,step,nsteps; | |
113 | |
114 for(stage=1; stage <=dct_NxN_log2N-1; stage++){ | |
115 nthreads = 1<<(stage-1); | |
116 stepsize = nthreads<<1; | |
117 nsteps = (1<<(dct_NxN_log2N-stage)) - 1; | |
118 for(thread=1; thread<=nthreads; thread++){ | |
119 curptr=N-thread; | |
120 for(step=1; step<=nsteps; step++){ | |
121 f[curptr] += f[curptr-stepsize]; | |
122 curptr -= stepsize; | |
123 } | |
124 } | |
125 } | |
126 } | |
127 | |
128 static void fwd_sums(double *f) | |
129 { | |
130 int stepsize,stage,curptr,nthreads,thread,step,nsteps; | |
131 | |
132 for(stage=dct_NxN_log2N-1; stage >=1; stage--){ | |
133 nthreads = 1<<(stage-1); | |
134 stepsize = nthreads<<1; | |
135 nsteps = (1<<(dct_NxN_log2N-stage)) - 1; | |
136 for(thread=1; thread<=nthreads; thread++){ | |
137 curptr=nthreads +thread-1; | |
138 for(step=1; step<=nsteps; step++){ | |
139 f[curptr] += f[curptr+stepsize]; | |
140 curptr += stepsize; | |
141 } | |
142 } | |
143 } | |
144 } | |
145 | |
146 static void scramble(double *f,int len){ | |
147 int i,ii1,ii2; | |
148 | |
149 bitrev(f,len); | |
150 bitrev(&f[0], len>>1); | |
151 bitrev(&f[len>>1], len>>1); | |
152 ii1=len-1; | |
153 ii2=len>>1; | |
154 for(i=0; i<(len>>2); i++){ | |
155 SWAP(f[ii1], f[ii2]); | |
156 ii1--; | |
157 ii2++; | |
158 } | |
159 } | |
160 | |
161 static void unscramble(double *f,int len) | |
162 { | |
163 int i,ii1,ii2; | |
164 | |
165 ii1 = len-1; | |
166 ii2 = len>>1; | |
167 for(i=0; i<(len>>2); i++){ | |
168 SWAP(f[ii1], f[ii2]); | |
169 ii1--; | |
170 ii2++; | |
171 } | |
172 bitrev(&f[0], len>>1); | |
173 bitrev(&f[len>>1], len>>1); | |
174 bitrev(f,len); | |
175 } | |
176 | |
177 static void inv_butterflies(double *f) | |
178 { | |
179 int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; | |
180 double Cfac,T; | |
181 | |
182 for(stage=1; stage<=dct_NxN_log2N;stage++){ | |
183 ngroups=1<<(dct_NxN_log2N-stage); | |
184 wingspan=1<<(stage-1); | |
185 increment=wingspan<<1; | |
186 for(butterfly=1; butterfly<=wingspan; butterfly++){ | |
187 Cfac = dct_NxN_costable[wingspan+butterfly-1]; | |
188 baseptr=0; | |
189 for(group=1; group<=ngroups; group++){ | |
190 ii1=baseptr+butterfly-1; | |
191 ii2=ii1+wingspan; | |
192 T=Cfac * f[ii2]; | |
193 f[ii2]=f[ii1]-T; | |
194 f[ii1]=f[ii1]+T; | |
195 baseptr += increment; | |
196 } | |
197 } | |
198 } | |
199 } | |
200 | |
201 static void fwd_butterflies(double *f) | |
202 { | |
203 int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; | |
204 double Cfac,T; | |
205 | |
206 for(stage=dct_NxN_log2N; stage>=1;stage--){ | |
207 ngroups=1<<(dct_NxN_log2N-stage); | |
208 wingspan=1<<(stage-1); | |
209 increment=wingspan<<1; | |
210 for(butterfly=1; butterfly<=wingspan; butterfly++){ | |
211 Cfac = dct_NxN_costable[wingspan+butterfly-1]; | |
212 baseptr=0; | |
213 for(group=1; group<=ngroups; group++){ | |
214 ii1=baseptr+butterfly-1; | |
215 ii2=ii1+wingspan; | |
216 T= f[ii2]; | |
217 f[ii2]=Cfac *(f[ii1]-T); | |
218 f[ii1]=f[ii1]+T; | |
219 baseptr += increment; | |
220 } | |
221 } | |
222 } | |
223 } | |
224 | |
225 static void ifct_noscale(double *f) | |
226 { | |
227 f[0] *= INVROOT2; | |
228 inv_sums(f); | |
229 bitrev(f,N); | |
230 inv_butterflies(f); | |
231 unscramble(f,N); | |
232 } | |
233 | |
234 static void fct_noscale(double *f) | |
235 { | |
236 scramble(f,N); | |
237 fwd_butterflies(f); | |
238 bitrev(f,N); | |
239 fwd_sums(f); | |
240 f[0] *= INVROOT2; | |
241 } | |
242 | |
243 void fdct_NxN(gray **pixels, double **dcts) { | |
244 int u,v; | |
245 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
246 | |
247 for (u=0; u < N; u++) | |
248 for (v=0; v < M; v++) | |
249 dcts[u][v] = ((int) pixels[u][v]-128); | |
250 | |
251 for (u=0; u<=M-1; u++){ | |
252 fct_noscale(dcts[u]); | |
253 } | |
254 for (v=0; v<=N-1; v++){ | |
255 for (u=0; u<=M-1; u++){ | |
256 dct_NxN_tmp[u] = dcts[u][v]; | |
257 } | |
258 fct_noscale(dct_NxN_tmp); | |
259 for (u=0; u<=M-1; u++){ | |
260 dcts[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
261 } | |
262 } | |
263 } | |
264 | |
265 void idct_NxN(double **dcts, gray **pixels) { | |
266 int u,v; | |
267 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
268 | |
269 double **tmp; | |
270 | |
271 tmp = alloc_coeffs(N, N); | |
272 for (u=0;u<N;u++) | |
273 for (v=0;v<M;v++) | |
274 tmp[u][v] = dcts[u][v]; | |
275 | |
276 for (u=0; u<=M-1; u++){ | |
277 ifct_noscale(tmp[u]); | |
278 } | |
279 for (v=0; v<=N-1; v++){ | |
280 for (u=0; u<=M-1; u++){ | |
281 dct_NxN_tmp[u] = tmp[u][v]; | |
282 } | |
283 ifct_noscale(dct_NxN_tmp); | |
284 for (u=0; u<=M-1; u++){ | |
285 tmp[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
286 } | |
287 } | |
288 | |
289 for (u=0;u<N;u++) | |
290 for (v=0;v<M;v++) | |
291 pixels[u][v] = PIXELRANGE(tmp[u][v] + 128.5); | |
292 free(tmp); | |
293 } | |
294 | |
295 void fdct_inplace_NxN(double **coeffs) { | |
296 int u,v; | |
297 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
298 | |
299 for (u=0; u<=M-1; u++) | |
300 fct_noscale(coeffs[u]); | |
301 | |
302 for (v=0; v<=N-1; v++){ | |
303 for (u=0; u<=M-1; u++) | |
304 dct_NxN_tmp[u] = coeffs[u][v]; | |
305 | |
306 fct_noscale(dct_NxN_tmp); | |
307 for (u=0; u<=M-1; u++) | |
308 coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
309 } | |
310 } | |
311 | |
312 void idct_inplace_NxN(double **coeffs) { | |
313 int u,v; | |
314 double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); | |
315 | |
316 for (u=0; u<=M-1; u++) | |
317 ifct_noscale(coeffs[u]); | |
318 | |
319 for (v=0; v<=N-1; v++) { | |
320 for (u=0; u<=M-1; u++) | |
321 dct_NxN_tmp[u] = coeffs[u][v]; | |
322 | |
323 ifct_noscale(dct_NxN_tmp); | |
324 for (u=0; u<=M-1; u++) | |
325 coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; | |
326 } | |
327 | |
328 } | |
329 | |
330 double **dct_NxM_costable_x = NULL; | |
331 double **dct_NxM_costable_y = NULL; | |
332 | |
333 void init_dct_NxM(int cols, int rows) { | |
334 int i, j; | |
335 double cx = sqrt(2.0 / cols); | |
336 double cy = sqrt(2.0 / rows); | |
337 | |
338 #ifdef DEBUG | |
339 if (cols <= 0 || rows <= 0) { | |
340 fprintf(stderr, "init_dct_NxM(): dimensions out of range\n"); | |
341 exit(1); | |
342 } | |
343 #endif | |
344 | |
345 if (dct_NxM_costable_x && N != cols) { | |
346 free_coeffs(dct_NxM_costable_x); | |
347 dct_NxM_costable_x = NULL; | |
348 } | |
349 | |
350 if (dct_NxM_costable_y && M != rows) { | |
351 free_coeffs(dct_NxM_costable_y); | |
352 dct_NxM_costable_y = NULL; | |
353 } | |
354 | |
355 if (!dct_NxM_costable_x) | |
356 dct_NxM_costable_x = alloc_coeffs(cols, cols); | |
357 if (!dct_NxM_costable_y) | |
358 dct_NxM_costable_y = alloc_coeffs(rows, rows); | |
359 | |
360 N = cols; | |
361 M = rows; | |
362 | |
363 for (i = 0; i < cols; i++) { | |
364 for (j = 0; j < cols; j++) { | |
365 dct_NxM_costable_x[i][j] = cx * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * N)); | |
366 } | |
367 } | |
368 | |
369 for (i = 0; i < rows; i++) { | |
370 for (j = 0; j < rows; j++) { | |
371 dct_NxM_costable_y[i][j] = cy * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * M)); | |
372 } | |
373 } | |
374 } | |
375 | |
376 void fdct_NxM(gray **pixels, double **dcts) { | |
377 int x, y; | |
378 int i, j; | |
379 double t; | |
380 double cx0 = sqrt(1.0 / N); | |
381 double cy0 = sqrt(1.0 / M); | |
382 | |
383 t = 0.0; | |
384 for (x = 0; x < N; x++) | |
385 for (y = 0; y < M; y++) | |
386 t += ((int) pixels[y][x] - 128); | |
387 dcts[0][0] = cx0 * cy0 * t; | |
388 | |
389 for (i = 1; i < N; i++) { | |
390 t = 0.0; | |
391 for (x = 0; x < N; x++) | |
392 for (y = 0; y < M; y++) | |
393 t += ((int) pixels[y][x] - 128) * dct_NxM_costable_x[x][i]; | |
394 dcts[0][i] = cy0 * t; | |
395 } | |
396 | |
397 for (j = 1; j < M; j++) { | |
398 t = 0.0; | |
399 for (x = 0; x < N; x++) | |
400 for (y = 0; y < M; y++) | |
401 t += ((int) pixels[y][x] - 128) * dct_NxM_costable_y[y][j]; | |
402 dcts[j][0] = cx0 * t; | |
403 } | |
404 | |
405 for (i = 1; i < N; i++) | |
406 for (j = 1; j < M; j++) { | |
407 t = 0.0; | |
408 for (x = 0; x < N; x++) | |
409 for (y = 0; y < M; y++) | |
410 t += ((int) pixels[y][x] - 128) * dct_NxM_costable_x[x][i] * dct_NxM_costable_y[y][j]; | |
411 dcts[j][i] = t; | |
412 } | |
413 } | |
414 | |
415 void idct_NxM(double **dcts, gray **pixels) { | |
416 int x, y; | |
417 int i, j; | |
418 double cx0 = sqrt(1.0 / N); | |
419 double cy0 = sqrt(1.0 / M); | |
420 double t; | |
421 | |
422 for (x = 0; x < N; x++) { | |
423 for (y = 0; y < M; y++) { | |
424 | |
425 t = cx0 * cy0 * dcts[0][0]; | |
426 | |
427 for (i = 1; i < N; i++) | |
428 t += cy0 * dcts[0][i] * dct_NxM_costable_x[x][i]; | |
429 | |
430 for (j = 1; j < M; j++) | |
431 t += cx0 * dcts[j][0] * dct_NxM_costable_y[y][j]; | |
432 | |
433 for (i = 1; i < N; i++) | |
434 for (j = 1; j < M; j++) | |
435 t += dcts[j][i] * dct_NxM_costable_x[x][i] * dct_NxM_costable_y[y][j]; | |
436 | |
437 pixels[y][x] = PIXELRANGE((int) (t + 128.5)); | |
438 } | |
439 } | |
440 } | |
441 | |
442 double C[NJPEG][NJPEG]; | |
443 double Ct[NJPEG][NJPEG]; | |
444 int Quantum[NJPEG][NJPEG]; | |
445 | |
446 void init_quantum_8x8(int quality) { | |
447 int i; | |
448 int j; | |
449 | |
450 for (i = 0; i < NJPEG; i++) | |
451 for ( j = 0 ; j < NJPEG ; j++ ) | |
452 Quantum[ i ][ j ] = 1 + ( ( 1 + i + j ) * quality ); | |
453 } | |
454 | |
455 void init_quantum_JPEG_lumin(int quality) { | |
456 int i; | |
457 int j; | |
458 | |
459 if (quality < 50) | |
460 quality = 5000 / quality; | |
461 else | |
462 quality = 200 - quality * 2; | |
463 | |
464 for (i = 0; i < NJPEG; i++) | |
465 for (j = 0 ; j < NJPEG ; j++) | |
466 if (quality) | |
467 Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; | |
468 else | |
469 Quantum[i][j] = JPEG_lumin_quant_table[i][j]; | |
470 } | |
471 | |
472 void init_quantum_JPEG_chromin(int quality) { | |
473 int i; | |
474 int j; | |
475 | |
476 if (quality < 50) | |
477 quality = 5000 / quality; | |
478 else | |
479 quality = 200 - quality * 2; | |
480 | |
481 for (i = 0; i < NJPEG; i++) | |
482 for (j = 0 ; j < NJPEG ; j++) | |
483 if (quality) | |
484 Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; | |
485 else | |
486 Quantum[i][j] = JPEG_lumin_quant_table[i][j]; | |
487 } | |
488 | |
489 void quantize_8x8(double **transform) { | |
490 int i; | |
491 int j; | |
492 | |
493 for (i = 0; i < NJPEG; i++) | |
494 for (j = 0; j < NJPEG; j++) | |
495 transform[i][j] = ROUND(transform[i][j] / Quantum[i][j]); | |
496 } | |
497 | |
498 void dequantize_8x8(double **transform) { | |
499 int i; | |
500 int j; | |
501 | |
502 for (i = 0; i < NJPEG; i++) | |
503 for (j = 0; j < NJPEG; j++) | |
504 transform[i][j] = ROUND(transform[i][j] * Quantum[i][j]); | |
505 } | |
506 | |
507 void init_dct_8x8() { | |
508 int i; | |
509 int j; | |
510 double pi = atan( 1.0 ) * 4.0; | |
511 | |
512 for ( j = 0 ; j < NJPEG ; j++ ) { | |
513 C[ 0 ][ j ] = 1.0 / sqrt( (double) NJPEG ); | |
514 Ct[ j ][ 0 ] = C[ 0 ][ j ]; | |
515 } | |
516 | |
517 for ( i = 1 ; i < NJPEG ; i++ ) | |
518 for ( j = 0 ; j < NJPEG ; j++ ) { | |
519 C[ i ][ j ] = sqrt( 2.0 / NJPEG ) * cos( pi * ( 2 * j + 1 ) * i / ( 2.0 * NJPEG ) ); | |
520 Ct[ j ][ i ] = C[ i ][ j ]; | |
521 } | |
522 } | |
523 | |
524 /* | |
525 * The Forward DCT routine implements the matrix function: | |
526 * | |
527 * DCT = C * pixels * Ct | |
528 */ | |
529 | |
530 void fdct_8x8(gray **input, double **output) { | |
531 double temp[NJPEG][NJPEG]; | |
532 double temp1; | |
533 int i; | |
534 int j; | |
535 int k; | |
536 | |
537 /* MatrixMultiply( temp, input, Ct ); */ | |
538 for ( i = 0 ; i < NJPEG ; i++ ) { | |
539 for ( j = 0 ; j < NJPEG ; j++ ) { | |
540 temp[ i ][ j ] = 0.0; | |
541 for ( k = 0 ; k < NJPEG ; k++ ) | |
542 temp[ i ][ j ] += ( (int) input[ i ][ k ]) * | |
543 Ct[ k ][ j ]; | |
544 } | |
545 } | |
546 | |
547 /* MatrixMultiply( output, C, temp ); */ | |
548 for ( i = 0 ; i < NJPEG ; i++ ) { | |
549 for ( j = 0 ; j < NJPEG ; j++ ) { | |
550 temp1 = 0.0; | |
551 for ( k = 0 ; k < NJPEG ; k++ ) | |
552 temp1 += C[ i ][ k ] * temp[ k ][ j ]; | |
553 output[ i ][ j ] = temp1; | |
554 } | |
555 } | |
556 } | |
557 | |
558 void fdct_block_8x8(gray **input, int col, int row, double **output) { | |
559 int i, j; | |
560 gray *input_array[NJPEG]; | |
561 | |
562 for (i = 0; i < NJPEG; i++) | |
563 input_array[i] = &input[row + i][col]; | |
564 | |
565 fdct_8x8(input_array, output); | |
566 } | |
567 | |
568 /* | |
569 * The Inverse DCT routine implements the matrix function: | |
570 * | |
571 * pixels = C * DCT * Ct | |
572 */ | |
573 | |
574 void idct_8x8(double **input, gray **output) { | |
575 double temp[ NJPEG ][ NJPEG ]; | |
576 double temp1; | |
577 int i; | |
578 int j; | |
579 int k; | |
580 | |
581 /* MatrixMultiply( temp, input, C ); */ | |
582 for ( i = 0 ; i < NJPEG ; i++ ) { | |
583 for ( j = 0 ; j < NJPEG ; j++ ) { | |
584 temp[ i ][ j ] = 0.0; | |
585 for ( k = 0 ; k < NJPEG ; k++ ) | |
586 temp[ i ][ j ] += input[ i ][ k ] * C[ k ][ j ]; | |
587 } | |
588 } | |
589 | |
590 /* MatrixMultiply( output, Ct, temp ); */ | |
591 for ( i = 0 ; i < NJPEG ; i++ ) { | |
592 for ( j = 0 ; j < NJPEG ; j++ ) { | |
593 temp1 = 0.0; | |
594 for ( k = 0 ; k < NJPEG ; k++ ) | |
595 temp1 += Ct[ i ][ k ] * temp[ k ][ j ]; | |
596 output[i][j] = PIXELRANGE(ROUND(temp1)); | |
597 } | |
598 } | |
599 } | |
600 | |
601 void idct_block_8x8(double **input, gray **output, int col, int row) { | |
602 int i, j; | |
603 gray *output_array[NJPEG]; | |
604 | |
605 for (i = 0; i < NJPEG; i++) | |
606 output_array[i] = &output[row + i][col]; | |
607 | |
608 idct_8x8(input, output_array); | |
609 } | |
610 | |
611 int is_middle_frequency_coeff_8x8(int coeff) { | |
612 switch (coeff) { | |
613 case 3: | |
614 case 10: | |
615 case 17: | |
616 case 24: | |
617 return 1; | |
618 case 4: | |
619 case 11: | |
620 case 18: | |
621 case 25: | |
622 case 32: | |
623 return 2; | |
624 case 5: | |
625 case 12: | |
626 case 19: | |
627 case 26: | |
628 case 33: | |
629 case 40: | |
630 return 3; | |
631 case 13: | |
632 case 20: | |
633 case 27: | |
634 case 34: | |
635 case 41: | |
636 return 4; | |
637 case 28: | |
638 case 35: | |
639 return 5; | |
640 default: | |
641 return 0; | |
642 } | |
643 } |