Mercurial > hg > wm
diff Meerwald/dct.c @ 0:be303a3f5ea8
import
author | Peter Meerwald <pmeerw@cosy.sbg.ac.at> |
---|---|
date | Sun, 12 Aug 2007 13:14:34 +0200 |
parents | |
children | acb6967ee76d |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Meerwald/dct.c Sun Aug 12 13:14:34 2007 +0200 @@ -0,0 +1,643 @@ +#include "wm.h" +#include "dct.h" + +#define INVROOT2 0.7071067814 +#define SWAP(A, B) {double t = A; A = B; B = t;} + +int N; +int M; + +double *dct_NxN_tmp = NULL; +double *dct_NxN_costable = NULL; +int dct_NxN_log2N = 0; + +static const unsigned int JPEG_lumin_quant_table[NJPEG][NJPEG] = { + {16, 11, 10, 16, 24, 40, 51, 61}, + {12, 12, 14, 19, 26, 58, 60, 55}, + {14, 13, 16, 24, 40, 57, 69, 56}, + {14, 17, 22, 29, 51, 87, 80, 62}, + {18, 22, 37, 56, 68, 109, 103, 77}, + {24, 35, 55, 64, 81, 104, 113, 92}, + {49, 64, 78, 87, 103, 121, 120, 101}, + {72, 92, 95, 98, 112, 100, 103, 99}}; + +static const unsigned int JPEG_chromin_quant_table[NJPEG][NJPEG] = { + {17, 18, 24, 47, 99, 99, 99, 99}, + {18, 21, 26, 66, 99, 99, 99, 99}, + {24, 26, 56, 99, 99, 99, 99, 99}, + {47, 66, 99, 99, 99, 99, 99, 99}, + {99, 99, 99, 99, 99, 99, 99, 99}, + {99, 99, 99, 99, 99, 99, 99, 99}, + {99, 99, 99, 99, 99, 99, 99, 99}, + {99, 99, 99, 99, 99, 99, 99, 99}}; + +static void initcosarray() +{ + int i,group,base,item,nitems,halfN; + double factor; + + dct_NxN_log2N = -1; + do{ + dct_NxN_log2N++; + if ((1<<dct_NxN_log2N)>N){ + fprintf(stderr, "dct_NxN: %d not a power of 2\n", N); + exit(1); + } + }while((1<<dct_NxN_log2N)<N); + if (dct_NxN_costable) free(dct_NxN_costable); + dct_NxN_costable = (double*) malloc(N * sizeof(double)); +#ifdef DEBUG + if(!dct_NxN_costable){ + fprintf(stderr, "Unable to allocate C array\n"); + exit(1); + } +#endif + halfN=N/2; + for(i=0;i<=halfN-1;i++) dct_NxN_costable[halfN+i]=4*i+1; + for(group=1;group<=dct_NxN_log2N-1;group++){ + base= 1<<(group-1); + nitems=base; + factor = 1.0*(1<<(dct_NxN_log2N-group)); + for(item=1; item<=nitems;item++) dct_NxN_costable[base+item-1]=factor*dct_NxN_costable[halfN+item-1]; + } + + for(i=1;i<=N-1;i++) dct_NxN_costable[i] = 1.0/(2.0*cos(dct_NxN_costable[i]*M_PI/(2.0*N))); +} + +void init_dct_NxN(int width, int height) { +#ifdef DEBUG + if (width != height || width <= 0) { + fprintf(stderr, "init_dct_NxN(): dimensions out of range\n"); + exit(1); + } +#endif + + if (dct_NxN_tmp && M != height) + free(dct_NxN_tmp); + + N = width; + M = height; + + dct_NxN_tmp = (double *) malloc(height * sizeof(double)); +#ifdef DEBUG + if (!dct_NxN_tmp) { + fprintf(stderr, "init_dct_NxN(): failed to allocate memory\n"); + exit(1); + } +#endif + + initcosarray(); +} + +static void bitrev(double *f, int len) +{ + int i,j,m; + + if (len<=2) return; /* No action necessary if n=1 or n=2 */ + j=1; + for(i=1; i<=len; i++){ + if(i<j) + SWAP(f[j-1], f[i-1]); + m = len>>1; + while(j>m){ + j=j-m; + m=(m+1)>>1; + } + j=j+m; + } +} + +static void inv_sums(double *f) +{ + int stepsize,stage,curptr,nthreads,thread,step,nsteps; + + for(stage=1; stage <=dct_NxN_log2N-1; stage++){ + nthreads = 1<<(stage-1); + stepsize = nthreads<<1; + nsteps = (1<<(dct_NxN_log2N-stage)) - 1; + for(thread=1; thread<=nthreads; thread++){ + curptr=N-thread; + for(step=1; step<=nsteps; step++){ + f[curptr] += f[curptr-stepsize]; + curptr -= stepsize; + } + } + } +} + +static void fwd_sums(double *f) +{ + int stepsize,stage,curptr,nthreads,thread,step,nsteps; + + for(stage=dct_NxN_log2N-1; stage >=1; stage--){ + nthreads = 1<<(stage-1); + stepsize = nthreads<<1; + nsteps = (1<<(dct_NxN_log2N-stage)) - 1; + for(thread=1; thread<=nthreads; thread++){ + curptr=nthreads +thread-1; + for(step=1; step<=nsteps; step++){ + f[curptr] += f[curptr+stepsize]; + curptr += stepsize; + } + } + } +} + +static void scramble(double *f,int len){ + int i,ii1,ii2; + + bitrev(f,len); + bitrev(&f[0], len>>1); + bitrev(&f[len>>1], len>>1); + ii1=len-1; + ii2=len>>1; + for(i=0; i<(len>>2); i++){ + SWAP(f[ii1], f[ii2]); + ii1--; + ii2++; + } +} + +static void unscramble(double *f,int len) +{ + int i,ii1,ii2; + + ii1 = len-1; + ii2 = len>>1; + for(i=0; i<(len>>2); i++){ + SWAP(f[ii1], f[ii2]); + ii1--; + ii2++; + } + bitrev(&f[0], len>>1); + bitrev(&f[len>>1], len>>1); + bitrev(f,len); +} + +static void inv_butterflies(double *f) +{ + int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; + double Cfac,T; + + for(stage=1; stage<=dct_NxN_log2N;stage++){ + ngroups=1<<(dct_NxN_log2N-stage); + wingspan=1<<(stage-1); + increment=wingspan<<1; + for(butterfly=1; butterfly<=wingspan; butterfly++){ + Cfac = dct_NxN_costable[wingspan+butterfly-1]; + baseptr=0; + for(group=1; group<=ngroups; group++){ + ii1=baseptr+butterfly-1; + ii2=ii1+wingspan; + T=Cfac * f[ii2]; + f[ii2]=f[ii1]-T; + f[ii1]=f[ii1]+T; + baseptr += increment; + } + } + } +} + +static void fwd_butterflies(double *f) +{ + int stage,ii1,ii2,butterfly,ngroups,group,wingspan,increment,baseptr; + double Cfac,T; + + for(stage=dct_NxN_log2N; stage>=1;stage--){ + ngroups=1<<(dct_NxN_log2N-stage); + wingspan=1<<(stage-1); + increment=wingspan<<1; + for(butterfly=1; butterfly<=wingspan; butterfly++){ + Cfac = dct_NxN_costable[wingspan+butterfly-1]; + baseptr=0; + for(group=1; group<=ngroups; group++){ + ii1=baseptr+butterfly-1; + ii2=ii1+wingspan; + T= f[ii2]; + f[ii2]=Cfac *(f[ii1]-T); + f[ii1]=f[ii1]+T; + baseptr += increment; + } + } + } +} + +static void ifct_noscale(double *f) +{ + f[0] *= INVROOT2; + inv_sums(f); + bitrev(f,N); + inv_butterflies(f); + unscramble(f,N); +} + +static void fct_noscale(double *f) +{ + scramble(f,N); + fwd_butterflies(f); + bitrev(f,N); + fwd_sums(f); + f[0] *= INVROOT2; +} + +void fdct_NxN(gray **pixels, double **dcts) { + int u,v; + double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); + + for (u=0; u < N; u++) + for (v=0; v < M; v++) + dcts[u][v] = ((int) pixels[u][v]-128); + + for (u=0; u<=M-1; u++){ + fct_noscale(dcts[u]); + } + for (v=0; v<=N-1; v++){ + for (u=0; u<=M-1; u++){ + dct_NxN_tmp[u] = dcts[u][v]; + } + fct_noscale(dct_NxN_tmp); + for (u=0; u<=M-1; u++){ + dcts[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; + } + } +} + +void idct_NxN(double **dcts, gray **pixels) { + int u,v; + double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); + + double **tmp; + + tmp = alloc_coeffs(N, N); + for (u=0;u<N;u++) + for (v=0;v<M;v++) + tmp[u][v] = dcts[u][v]; + + for (u=0; u<=M-1; u++){ + ifct_noscale(tmp[u]); + } + for (v=0; v<=N-1; v++){ + for (u=0; u<=M-1; u++){ + dct_NxN_tmp[u] = tmp[u][v]; + } + ifct_noscale(dct_NxN_tmp); + for (u=0; u<=M-1; u++){ + tmp[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; + } + } + + for (u=0;u<N;u++) + for (v=0;v<M;v++) + pixels[u][v] = PIXELRANGE(tmp[u][v] + 128.5); + free(tmp); +} + +void fdct_inplace_NxN(double **coeffs) { + int u,v; + double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); + + for (u=0; u<=M-1; u++) + fct_noscale(coeffs[u]); + + for (v=0; v<=N-1; v++){ + for (u=0; u<=M-1; u++) + dct_NxN_tmp[u] = coeffs[u][v]; + + fct_noscale(dct_NxN_tmp); + for (u=0; u<=M-1; u++) + coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; + } +} + +void idct_inplace_NxN(double **coeffs) { + int u,v; + double two_over_sqrtncolsnrows = 2.0/sqrt((double) N*M); + + for (u=0; u<=M-1; u++) + ifct_noscale(coeffs[u]); + + for (v=0; v<=N-1; v++) { + for (u=0; u<=M-1; u++) + dct_NxN_tmp[u] = coeffs[u][v]; + + ifct_noscale(dct_NxN_tmp); + for (u=0; u<=M-1; u++) + coeffs[u][v] = dct_NxN_tmp[u]*two_over_sqrtncolsnrows; + } + +} + +double **dct_NxM_costable_x = NULL; +double **dct_NxM_costable_y = NULL; + +void init_dct_NxM(int cols, int rows) { + int i, j; + double cx = sqrt(2.0 / cols); + double cy = sqrt(2.0 / rows); + +#ifdef DEBUG + if (cols <= 0 || rows <= 0) { + fprintf(stderr, "init_dct_NxM(): dimensions out of range\n"); + exit(1); + } +#endif + + if (dct_NxM_costable_x && N != cols) { + free_coeffs(dct_NxM_costable_x); + dct_NxM_costable_x = NULL; + } + + if (dct_NxM_costable_y && M != rows) { + free_coeffs(dct_NxM_costable_y); + dct_NxM_costable_y = NULL; + } + + if (!dct_NxM_costable_x) + dct_NxM_costable_x = alloc_coeffs(cols, cols); + if (!dct_NxM_costable_y) + dct_NxM_costable_y = alloc_coeffs(rows, rows); + + N = cols; + M = rows; + + for (i = 0; i < cols; i++) { + for (j = 0; j < cols; j++) { + dct_NxM_costable_x[i][j] = cx * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * N)); + } + } + + for (i = 0; i < rows; i++) { + for (j = 0; j < rows; j++) { + dct_NxM_costable_y[i][j] = cy * cos((M_PI * ((2*i + 1) * j)) / (double) (2 * M)); + } + } +} + +void fdct_NxM(gray **pixels, double **dcts) { + int x, y; + int i, j; + double t; + double cx0 = sqrt(1.0 / N); + double cy0 = sqrt(1.0 / M); + + t = 0.0; + for (x = 0; x < N; x++) + for (y = 0; y < M; y++) + t += ((int) pixels[y][x] - 128); + dcts[0][0] = cx0 * cy0 * t; + + for (i = 1; i < N; i++) { + t = 0.0; + for (x = 0; x < N; x++) + for (y = 0; y < M; y++) + t += ((int) pixels[y][x] - 128) * dct_NxM_costable_x[x][i]; + dcts[0][i] = cy0 * t; + } + + for (j = 1; j < M; j++) { + t = 0.0; + for (x = 0; x < N; x++) + for (y = 0; y < M; y++) + t += ((int) pixels[y][x] - 128) * dct_NxM_costable_y[y][j]; + dcts[j][0] = cx0 * t; + } + + for (i = 1; i < N; i++) + for (j = 1; j < M; j++) { + t = 0.0; + for (x = 0; x < N; x++) + for (y = 0; y < M; y++) + t += ((int) pixels[y][x] - 128) * dct_NxM_costable_x[x][i] * dct_NxM_costable_y[y][j]; + dcts[j][i] = t; + } +} + +void idct_NxM(double **dcts, gray **pixels) { + int x, y; + int i, j; + double cx0 = sqrt(1.0 / N); + double cy0 = sqrt(1.0 / M); + double t; + + for (x = 0; x < N; x++) { + for (y = 0; y < M; y++) { + + t = cx0 * cy0 * dcts[0][0]; + + for (i = 1; i < N; i++) + t += cy0 * dcts[0][i] * dct_NxM_costable_x[x][i]; + + for (j = 1; j < M; j++) + t += cx0 * dcts[j][0] * dct_NxM_costable_y[y][j]; + + for (i = 1; i < N; i++) + for (j = 1; j < M; j++) + t += dcts[j][i] * dct_NxM_costable_x[x][i] * dct_NxM_costable_y[y][j]; + + pixels[y][x] = PIXELRANGE((int) (t + 128.5)); + } + } +} + +double C[NJPEG][NJPEG]; +double Ct[NJPEG][NJPEG]; +int Quantum[NJPEG][NJPEG]; + +void init_quantum_8x8(int quality) { + int i; + int j; + + for (i = 0; i < NJPEG; i++) + for ( j = 0 ; j < NJPEG ; j++ ) + Quantum[ i ][ j ] = 1 + ( ( 1 + i + j ) * quality ); +} + +void init_quantum_JPEG_lumin(int quality) { + int i; + int j; + + if (quality < 50) + quality = 5000 / quality; + else + quality = 200 - quality * 2; + + for (i = 0; i < NJPEG; i++) + for (j = 0 ; j < NJPEG ; j++) + if (quality) + Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; + else + Quantum[i][j] = JPEG_lumin_quant_table[i][j]; +} + +void init_quantum_JPEG_chromin(int quality) { + int i; + int j; + + if (quality < 50) + quality = 5000 / quality; + else + quality = 200 - quality * 2; + + for (i = 0; i < NJPEG; i++) + for (j = 0 ; j < NJPEG ; j++) + if (quality) + Quantum[i][j] = (JPEG_lumin_quant_table[i][j] * quality + 50) / 100; + else + Quantum[i][j] = JPEG_lumin_quant_table[i][j]; +} + +void quantize_8x8(double **transform) { + int i; + int j; + + for (i = 0; i < NJPEG; i++) + for (j = 0; j < NJPEG; j++) + transform[i][j] = ROUND(transform[i][j] / Quantum[i][j]); +} + +void dequantize_8x8(double **transform) { + int i; + int j; + + for (i = 0; i < NJPEG; i++) + for (j = 0; j < NJPEG; j++) + transform[i][j] = ROUND(transform[i][j] * Quantum[i][j]); +} + +void init_dct_8x8() { + int i; + int j; + double pi = atan( 1.0 ) * 4.0; + + for ( j = 0 ; j < NJPEG ; j++ ) { + C[ 0 ][ j ] = 1.0 / sqrt( (double) NJPEG ); + Ct[ j ][ 0 ] = C[ 0 ][ j ]; + } + + for ( i = 1 ; i < NJPEG ; i++ ) + for ( j = 0 ; j < NJPEG ; j++ ) { + C[ i ][ j ] = sqrt( 2.0 / NJPEG ) * cos( pi * ( 2 * j + 1 ) * i / ( 2.0 * NJPEG ) ); + Ct[ j ][ i ] = C[ i ][ j ]; + } +} + +/* + * The Forward DCT routine implements the matrix function: + * + * DCT = C * pixels * Ct + */ + +void fdct_8x8(gray **input, double **output) { + double temp[NJPEG][NJPEG]; + double temp1; + int i; + int j; + int k; + +/* MatrixMultiply( temp, input, Ct ); */ + for ( i = 0 ; i < NJPEG ; i++ ) { + for ( j = 0 ; j < NJPEG ; j++ ) { + temp[ i ][ j ] = 0.0; + for ( k = 0 ; k < NJPEG ; k++ ) + temp[ i ][ j ] += ( (int) input[ i ][ k ]) * + Ct[ k ][ j ]; + } + } + +/* MatrixMultiply( output, C, temp ); */ + for ( i = 0 ; i < NJPEG ; i++ ) { + for ( j = 0 ; j < NJPEG ; j++ ) { + temp1 = 0.0; + for ( k = 0 ; k < NJPEG ; k++ ) + temp1 += C[ i ][ k ] * temp[ k ][ j ]; + output[ i ][ j ] = temp1; + } + } +} + +void fdct_block_8x8(gray **input, int col, int row, double **output) { + int i, j; + gray *input_array[NJPEG]; + + for (i = 0; i < NJPEG; i++) + input_array[i] = &input[row + i][col]; + + fdct_8x8(input_array, output); +} + +/* + * The Inverse DCT routine implements the matrix function: + * + * pixels = C * DCT * Ct + */ + +void idct_8x8(double **input, gray **output) { + double temp[ NJPEG ][ NJPEG ]; + double temp1; + int i; + int j; + int k; + +/* MatrixMultiply( temp, input, C ); */ + for ( i = 0 ; i < NJPEG ; i++ ) { + for ( j = 0 ; j < NJPEG ; j++ ) { + temp[ i ][ j ] = 0.0; + for ( k = 0 ; k < NJPEG ; k++ ) + temp[ i ][ j ] += input[ i ][ k ] * C[ k ][ j ]; + } + } + +/* MatrixMultiply( output, Ct, temp ); */ + for ( i = 0 ; i < NJPEG ; i++ ) { + for ( j = 0 ; j < NJPEG ; j++ ) { + temp1 = 0.0; + for ( k = 0 ; k < NJPEG ; k++ ) + temp1 += Ct[ i ][ k ] * temp[ k ][ j ]; + output[i][j] = PIXELRANGE(ROUND(temp1)); + } + } +} + +void idct_block_8x8(double **input, gray **output, int col, int row) { + int i, j; + gray *output_array[NJPEG]; + + for (i = 0; i < NJPEG; i++) + output_array[i] = &output[row + i][col]; + + idct_8x8(input, output_array); +} + +int is_middle_frequency_coeff_8x8(int coeff) { + switch (coeff) { + case 3: + case 10: + case 17: + case 24: + return 1; + case 4: + case 11: + case 18: + case 25: + case 32: + return 2; + case 5: + case 12: + case 19: + case 26: + case 33: + case 40: + return 3; + case 13: + case 20: + case 27: + case 34: + case 41: + return 4; + case 28: + case 35: + return 5; + default: + return 0; + } +}