view spandsp-0.0.6pre17/src/spandsp/vector_float.h @ 4:26cd8f1ef0b1

import spandsp-0.0.6pre17
author Peter Meerwald <pmeerw@cosy.sbg.ac.at>
date Fri, 25 Jun 2010 15:50:58 +0200
parents
children
line wrap: on
line source

/*
 * SpanDSP - a series of DSP components for telephony
 *
 * vector_float.h
 *
 * Written by Steve Underwood <steveu@coppice.org>
 *
 * Copyright (C) 2003 Steve Underwood
 *
 * All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License version 2.1,
 * as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * $Id: vector_float.h,v 1.15 2009/01/31 08:48:11 steveu Exp $
 */

#if !defined(_SPANDSP_VECTOR_FLOAT_H_)
#define _SPANDSP_VECTOR_FLOAT_H_

#if defined(__cplusplus)
extern "C"
{
#endif

SPAN_DECLARE(void) vec_copyf(float z[], const float x[], int n);

SPAN_DECLARE(void) vec_copy(double z[], const double x[], int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_copyl(long double z[], const long double x[], int n);
#endif

SPAN_DECLARE(void) vec_negatef(float z[], const float x[], int n);

SPAN_DECLARE(void) vec_negate(double z[], const double x[], int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_negatel(long double z[], const long double x[], int n);
#endif

SPAN_DECLARE(void) vec_zerof(float z[], int n);

SPAN_DECLARE(void) vec_zero(double z[], int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_zerol(long double z[], int n);
#endif

SPAN_DECLARE(void) vec_setf(float z[], float x, int n);

SPAN_DECLARE(void) vec_set(double z[], double x, int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_setl(long double z[], long double x, int n);
#endif

SPAN_DECLARE(void) vec_addf(float z[], const float x[], const float y[], int n);

SPAN_DECLARE(void) vec_add(double z[], const double x[], const double y[], int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_addl(long double z[], const long double x[], const long double y[], int n);
#endif

SPAN_DECLARE(void) vec_scaledxy_addf(float z[], const float x[], float x_scale, const float y[], float y_scale, int n);

SPAN_DECLARE(void) vec_scaledxy_add(double z[], const double x[], double x_scale, const double y[], double y_scale, int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_scaledxy_addl(long double z[], const long double x[], long double x_scale, const long double y[], long double y_scale, int n);
#endif

SPAN_DECLARE(void) vec_scaledy_addf(float z[], const float x[], const float y[], float y_scale, int n);

SPAN_DECLARE(void) vec_scaledy_add(double z[], const double x[], const double y[], double y_scale, int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_scaledy_addl(long double z[], const long double x[], const long double y[], long double y_scale, int n);
#endif

SPAN_DECLARE(void) vec_subf(float z[], const float x[], const float y[], int n);

SPAN_DECLARE(void) vec_sub(double z[], const double x[], const double y[], int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_subl(long double z[], const long double x[], const long double y[], int n);
#endif

SPAN_DECLARE(void) vec_scaledxy_subf(float z[], const float x[], float x_scale, const float y[], float y_scale, int n);

SPAN_DECLARE(void) vec_scaledxy_sub(double z[], const double x[], double x_scale, const double y[], double y_scale, int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_scaledxy_subl(long double z[], const long double x[], long double x_scale, const long double y[], long double y_scale, int n);
#endif

SPAN_DECLARE(void) vec_scaledx_subf(float z[], const float x[], float x_scale, const float y[], int n);

SPAN_DECLARE(void) vec_scaledx_sub(double z[], const double x[], double x_scale, const double y[], int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_scaledx_subl(long double z[], const long double x[], long double x_scale, const long double y[], int n);
#endif

SPAN_DECLARE(void) vec_scaledy_subf(float z[], const float x[], const float y[], float y_scale, int n);

SPAN_DECLARE(void) vec_scaledy_sub(double z[], const double x[], const double y[], double y_scale, int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_scaledy_subl(long double z[], const long double x[], const long double y[], long double y_scale, int n);
#endif

SPAN_DECLARE(void) vec_scalar_mulf(float z[], const float x[], float y, int n);

SPAN_DECLARE(void) vec_scalar_mul(double z[], const double x[], double y, int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_scalar_mull(long double z[], const long double x[], long double y, int n);
#endif

SPAN_DECLARE(void) vec_scalar_addf(float z[], const float x[], float y, int n);

SPAN_DECLARE(void) vec_scalar_add(double z[], const double x[], double y, int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_scalar_addl(long double z[], const long double x[], long double y, int n);
#endif

SPAN_DECLARE(void) vec_scalar_subf(float z[], const float x[], float y, int n);

SPAN_DECLARE(void) vec_scalar_sub(double z[], const double x[], double y, int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_scalar_subl(long double z[], const long double x[], long double y, int n);
#endif

SPAN_DECLARE(void) vec_mulf(float z[], const float x[], const float y[], int n);

SPAN_DECLARE(void) vec_mul(double z[], const double x[], const double y[], int n);

#if defined(HAVE_LONG_DOUBLE)
SPAN_DECLARE(void) vec_mull(long double z[], const long double x[], const long double y[], int n);
#endif

/*! \brief Find the dot product of two float vectors.
    \param x The first vector.
    \param y The first vector.
    \param n The number of elements in the vectors.
    \return The dot product of the two vectors. */
SPAN_DECLARE(float) vec_dot_prodf(const float x[], const float y[], int n);

/*! \brief Find the dot product of two double vectors.
    \param x The first vector.
    \param y The first vector.
    \param n The number of elements in the vectors.
    \return The dot product of the two vectors. */
SPAN_DECLARE(double) vec_dot_prod(const double x[], const double y[], int n);

#if defined(HAVE_LONG_DOUBLE)
/*! \brief Find the dot product of two long double vectors.
    \param x The first vector.
    \param y The first vector.
    \param n The number of elements in the vectors.
    \return The dot product of the two vectors. */
SPAN_DECLARE(long double) vec_dot_prodl(const long double x[], const long double y[], int n);
#endif

/*! \brief Find the dot product of two float vectors, where the first is a circular buffer
           with an offset for the starting position.
    \param x The first vector.
    \param y The first vector.
    \param n The number of elements in the vectors.
    \param pos The starting position in the x vector.
    \return The dot product of the two vectors. */
SPAN_DECLARE(float) vec_circular_dot_prodf(const float x[], const float y[], int n, int pos);

SPAN_DECLARE(void) vec_lmsf(const float x[], float y[], int n, float error);

SPAN_DECLARE(void) vec_circular_lmsf(const float x[], float y[], int n, int pos, float error);

#if defined(__cplusplus)
}
#endif

#endif
/*- End of file ------------------------------------------------------------*/

Repositories maintained by Peter Meerwald, pmeerw@pmeerw.net.